理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

観測

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/07(木) 17:12:22.35 ID:CAP_USER
 京都大学を中心とする共同研究グループは、宮古島に設置した超低コストな小型望遠鏡を用いた観測によって、太陽系の果てに、太陽系最古の始原天体「微惑星」の生き残りと推定される極めて小さなサイズの天体の発見に史上初めて成功した。

 地球を含む太陽系の惑星は、太陽系誕生時に大量に存在した半径1-10 km程度のサイズの小天体「微惑星」が、衝突・合体を繰り返して現在の大きさまで成長したと考えられている。こうした微惑星の一部は成長過程から取り残され、現在においても、海王星より遠方の太陽系の果て「エッジワース・カイパーベルト」(以下、カイパーベルト)という領域に生き残っていると予見されてきた。しかしながら、微小なカイパーベルト天体は見かけの明るさが暗すぎて、最先端の望遠鏡を用いても直接観測は不可能だったため、これまでに発見例はなかった。

続きはソースで

論文情報:【Nature Astronomy】A kilometre-sized Kuiper belt object discovered by stellar occultation using amateur telescopes
https://www.nature.com/articles/s41550-018-0685-8

https://univ-journal.jp/24683/
ダウンロード


引用元: 【天文学】史上初、太陽系の果てにある微惑星の生き残りを京都大学らが観測[02/07]

史上初、太陽系の果てにある微惑星の生き残りを京都大学らが観測の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/03/12(火) 13:53:07.01 ID:CAP_USER
太陽系に未だに知られていない惑星が存在する可能性は、天文学者たちを魅了し続けている。カリフォルニア工科大学の研究者たちは新たな研究に基づいて、過去20年の間に得られた「第9惑星」の証拠を提示し、もし本当に存在するならば、今後10年以内に見つかるだろうと予測している。

太陽系の探査に関して言えば、天文学者たちは恥ずかしい秘密を持っている。400年にわたり天体観測をしてきたにもかかわらず、その間に天文学者たちは、古代の人々が知らなかったであろう大きな天体をわずか2つしか発見していない。1781年に天王星、1846年に海王星だ。

惑星を探す試みをしていなかったたわけではない。観測領域をわずかに外れた場所に未知の惑星が存在する可能性は、蛾を引き寄せる炎のように、天文学者たちを引き付けてきた。成功を収めたのはそのうち数人だ。他の惑星の軌道が未知の質量による重力の影響を受けていることに気付いた複数の天文学者が、海王星を共同で発見した。

海王星だけでは惑星の軌道のずれを完全に説明できないため、未知の惑星の探索は20世紀に入ってからも続き、1930年の冥王星の発見に至った。だが、冥王星はあまりにも小さく、他の惑星の軌道に影響を与える原因にはなり得ないことが判明した。

続きはソースで

https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/03/05183312/arxivsolarsystem-cropped.jpg

https://www.technologyreview.jp/s/129444/theres-probably-another-planet-in-our-solar-system/
ダウンロード


引用元: 【宇宙】太陽系の未知の惑星「プラネット・ナイン」、10年以内に発見できる可能性[03/12]

太陽系の未知の惑星「プラネット・ナイン」、10年以内に発見できる可能性の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/13(水) 14:15:29.88 ID:CAP_USER
オリオン座大星雲の中にある巨大な若い星の周りの円盤中に、塩化ナトリウムが発見された。若い星の周りで塩が発見されたのは初めてのことだ。
【2019年2月12日 アルマ望遠鏡】

米・国立電波天文台のAdam Ginsburgさんたちの研究チームが、約1500光年離れたオリオン座大星雲の中にある巨大な原始星「オリオンKL電波源I(アイ)」をアルマ望遠鏡で観測したところ、塩化ナトリウムや塩化カリウムの分子が放つ60もの輝線がとらえられた。

塩が見つかったのは中心星からおよそ45億~90億kmの場所で、存在する塩の総量は地球の海の質量と同じくらいと計算されている。

「塩化ナトリウムは死にゆく星の外層部でしかこれまで見つかっていなかったので、若い星の周りで塩が見つかるとは思っていませんでした。これが何を意味するのか、私たちはまだ完全には理解できていません。とにかく、この星の周りの環境が特殊だということを示しているのだと考えています」(Ginsburgさん)。


■ジェミニ望遠鏡によるオリオンKL領域の近赤外線画像に、アルマ望遠鏡が観測した塩化ナトリウムからの電波分布を合成した画像(提供:ALMA (NRAO/ESO/NAOJ); NRAO/AUI/NSF; Gemini Observatory/AURA)
http://www.astroarts.co.jp/article/assets/2019/02/15753_ori_kl.jpg


詳しい分析の結果、塩化ナトリウムが分布する場所の温度が、約100Kから4000K(摂氏マイナス175度からプラス3700度)という極端に温度差のある環境であることがわかった。研究チームでは、星を取り巻く円盤の中で塵の粒子が互いに衝突し壊れることによって、塵に含まれていた塩化ナトリウムや塩化カリウムが飛び出してきたと推測している。つまり、塩があるところをつきとめれば、星周円盤の広がりがわかるというわけだ。

続きはソースで

■オリオンKL電波源Iの想像図。中心に赤ちゃん星があり、その周りをガスと塵の円盤が取り巻いている。星の近くの青白く光っている部分が、今回アルマ望遠鏡による観測で塩が見つかった領域(提供:NRAO/AUI/NSF; S. Dagnello)
http://www.astroarts.co.jp/article/assets/2019/02/15754_disk.jpg

アストロアーツ
http://www.astroarts.co.jp/article/hl/a/10480_salt
ダウンロード (3)


引用元: 【アルマ望遠鏡】〈詳報〉オリオン座大星雲の原始惑星系円盤のまわりに塩(塩化ナトリウム)を発見[02/12]

【アルマ望遠鏡】〈詳報〉オリオン座大星雲の原始惑星系円盤のまわりに塩(塩化ナトリウム)を発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/14(木) 04:44:01.76 ID:CAP_USER
遠方宇宙のクエーサーの観測から、初期宇宙の膨張が標準宇宙モデルの予測と食い違っている可能性が示された。標準理論を超える新たな物理を考える必要があるかもしれない。

【2019年2月4日 ヨーロッパ宇宙機関】

現在の標準宇宙モデルでは、人体や惑星、恒星などを形作っている「普通の物質」(バリオン)は宇宙全体のエネルギーの数パーセントしか占めていないとされている。宇宙の全エネルギーの約4分の1は、重力は及ぼすものの電磁波では観測できない「ダークマター」が担っていて、残り4分の3は宇宙の加速膨張を現在も引き起こしている「ダークエネルギー」という謎の物質が占めているとみられる。

この標準宇宙モデルを構築する基礎となったのは、約138億年前に起こったビックバンの熱放射の名残である宇宙マイクロ波背景放射(CMB)の観測と、より地球に近い(=時代が新しい)宇宙で得られた観測データだ。地球に近い宇宙の観測で得られる情報には、超新星爆発や銀河団の観測データや、遠方の銀河の像が重力レンズ効果で歪む効果の観測データなどがある。こうした観測結果は、今から約90億年前までの「最近」の宇宙膨張の様子を調べるのに使われる。

今回、伊・フィレンツェ大学のGuido Risalitiさんと、英・ダーラム大学のElisabeta Lussoさんたちの研究チームでは、宇宙膨張の歴史を調べる新たな指標として「クエーサー」を利用することで、近傍宇宙とビッグバン直後の宇宙の間にある観測の「空白域」を埋め、約120億年前までの宇宙膨張の様子を調べた。

クエーサーは、銀河中心にある超大質量ブラックホールが周囲から猛烈な勢いで物質を吸い込み、桁外れの明るさで輝いている天体だ。物質がブラックホールへ落ち込むと、その周囲に降着円盤が形成され、円盤内の物質が摩擦で加熱されて可視光線や紫外線を強く放射する。円盤の周りに存在している光速に近い電子がこの紫外線とぶつかると、紫外線の光子はさらにエネルギーの高いX線となる。

■銀河中心の超大質量ブラックホールの周囲には降着円盤(オレンジ色)ができ、ここから強い紫外線が放射される。さらに、この紫外線が円盤の周囲にある高エネルギーの電子(青)と衝突することでX線も放射される。遠方の様々な距離にあるクエーサーを観測することで、宇宙膨張の歴史を調べることができる(提供:ESA (artist's impression and composition); NASA/ESA/Hubble (background galaxies))
http://www.astroarts.co.jp/article/assets/2019/02/15680_quasars.jpg

クエーサーが放つ紫外線とX線の明るさの間には、一定の関係があることが以前から知られていた。3年前、RisalitiさんとLussoさんは、この関係を使えば、クエーサーが放つ紫外線の「真の明るさ」がわかるので、見かけの明るさと真の明るさの差からクエーサーまでの距離を見積もることができることに気づいた。多くのクエーサーまでの距離がわかれば、宇宙膨張の歴史を調べることもできる。

このように、真の明るさと見かけの明るさの差から距離を測ることができる天体は「標準光源」と呼ばれている。最もよく知られている例は「Ia型超新星」だ。Ia型超新星の真の明るさはどれも同じと考えられているため、ピンポイントで距離を知ることができる。

■Ia型超新星(水色)とクエーサー(黄色、赤、青)を使った距離の測定結果。縦軸が天体までの距離、横軸が宇宙の年齢(単位:10億年)を表し、右に行くほどビッグバンに近い初期宇宙を表す。ピンクの破線が近傍宇宙の観測だけをもとに標準宇宙モデルで導いた予測で、黒の実線がすべての観測に最もよく合う曲線を示す。クエーサーでしか調べることができないグラフの右の方(初期の宇宙)で、両者に食い違いが見られる(提供:Courtesy of Elisabeta Lusso & Guido Risaliti (2019))
http://www.astroarts.co.jp/article/assets/2019/02/15681_distance.jpg

続きはソースで

http://www.astroarts.co.jp/article/hl/a/10463_expansion
ダウンロード (6)


引用元: 【天体物理学】宇宙膨張が標準理論と不一致?クエーサーの観測から示唆[02/04]

【天体物理学】宇宙膨張が標準理論と不一致?クエーサーの観測から示唆の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/01/29(火) 18:03:05.33 ID:CAP_USER
■宮古島の小さな望遠鏡が太陽系誕生の歴史と彗星の起源を明らかに-

有松亘 理学研究科研究員らの研究グループは、沖縄県宮古島市にて実施した小型望遠鏡を用いた観測によって、太陽系外縁部「エッジワース・カイパーベルト」に惑星の形成材料である始原天体「微惑星」の生き残りと推定される極めて小さなサイズ(半径およそ1km)の天体を初めて発見しました。

続きはソースで

図:本研究によって史上初めて発見された、微惑星の生き残りと推定される半径約1.3kmの小型カイパーベルト天体の想像図。
http://www.kyoto-u.ac.jp/ja/research/research_results/2018/images/190129_1/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2018/190129_1.html
ダウンロード (3)


引用元: 【天文学】太陽系の果てに極めて小さな始原天体を初めて発見[01/29]

太陽系の果てに極めて小さな始原天体を初めて発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/13(水) 14:00:35.81 ID:CAP_USER
 太陽系などがある天の川銀河の中心付近に、太陽の3万倍の質量を持つ中型のブラックホールがあることが分かったと、国立天文台などの研究チームが発表した。ブラックホールの進化の解明につながる可能性があるという。論文が米専門誌に掲載された。

 天の川銀河の中心には、太陽の400万倍の質量を持つ巨大なブラックホールがあるとされる。その近辺に、中型のブラックホールが存在する可能性が複数報告されているが、存在を示す確かな証拠は見つかっていなかった。

続きはソースで

https://www.yomiuri.co.jp/media/2019/02/20190213-OYT1I50036-1.jpg?type=large

ニフティニュース
https://news.nifty.com/article/technology/techall/12213-20190213-50202/
ダウンロード (4)

引用元: 【宇宙】質量は太陽の3万倍、中型ブラックホール発見[02/13]

質量は太陽の3万倍、中型ブラックホール発見の続きを読む

このページのトップヘ