理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

質量

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/10(月) 16:19:43.59 ID:CAP_USER
地球が属する太陽系には、水星・金星・地球・火星・木星・土星・天王星・海王星に次ぐ第9の惑星「プラネット・ナイン」が存在していると考えられています。この惑星の存在自体はさまざまな観測データなどから90%以上の確率で間違いないと考えられていますが、科学者によると実際に人類がその姿を直接観測するまでにはあと少なくとも1000年以上待たなければならない模様です。

"Planet Nine" Might Be Invisible, Hiding Beyond Neptune, Scientists Think - Advocator
https://advocator.ca/science/planet-nine-might-be-invisible-hiding-beyond-neptune-scientists-think/5244

Planet Nine might be invisible for at least 1,000 years - SlashGear
https://www.slashgear.com/planet-nine-might-be-invisible-for-at-least-1000-years-03544238/

プラネット・ナインは海王星よりも遠い軌道で太陽を周回していると考えられている惑星です。その軌道は大きな軌道離心率を持つと考えられており、最も太陽に近づいた時(近日点)でも太陽からの距離は地球の200倍である約200AU、最も遠ざかった時には約1200AUにもなると考えられており、確認されている中では最も遠い海王星よりも約7倍~約20倍という遠さとなっています。


プラネット・ナインは地球の10倍の質量と、2倍から4倍の大きさを持つと推定されていますが、太陽からあまりに遠い場所に存在するために地球から太陽光の反射をほとんど確認することができません。そのため、プラネット・ナインは理論上は存在が確認されているものの、望遠鏡などを使った光学観測でその姿を捉えることが極めて難しい天体とされています。

続きはソースで

https://i.gzn.jp/img/2018/09/04/planet-nine-invisible-1000-years/01_m.jpg

GIGAZINE
https://gigazine.net/news/20180904-planet-nine-invisible-1000-years/
images (1)


引用元: 【宇宙】太陽系の未知の惑星「プラネット・ナイン(太陽系第9惑星)」が発見されるまでにはあと1000年かかる[09/04]

太陽系の未知の惑星「プラネット・ナイン(太陽系第9惑星)」が発見されるまでにはあと1000年かかるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/11(火) 14:05:21.50 ID:CAP_USER
(CNN) 2006年にそれまでの惑星から準惑星へと区分が変更になった冥王星について、「格下げ」に異議を唱える声が一部の研究者から上がっている。当時の判断の根拠となった惑星の定義に関する説明がそもそも有効ではなかったというのが理由だ。

国際天文学連合(IAU)は惑星の条件として、太陽の周りを公転する天体であること、球形もしくはそれに近い形状を維持していること、公転軌道上の他の天体を排除していることを挙げている。冥王星に関しては他の天体を排除できるだけの質量を有していないとの見方から、惑星の条件を満たしていないという結論が下った。

準惑星への「格下げ」の決定をめぐってはこれまでも議論が起こっていたが、改めてこれに反論する内容の論文がこのほど米科学誌に掲載された。

続きはソースで

https://www.cnn.co.jp/storage/2018/09/11/11cfe379302f109a0f59f7c5fdaebf11/t/768/432/d/pluto-horizon-0714-super-169.jpg

CNN
https://www.cnn.co.jp/fringe/35125401.html
ダウンロード (1)


引用元: 【天文学】2006年に惑星から準惑星に区分変更の冥王星、やっぱり惑星? 研究者が「格下げ」に異議[09/11]

2006年に惑星から準惑星に区分変更の冥王星、やっぱり惑星? 研究者が「格下げ」に異議の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/04(火) 12:47:39.06 ID:CAP_USER
■3000人による研究が結実、ボトムクォークへの崩壊をついに観察

 物理学者たちは数十年前から、「神の素粒子」と呼ばれるヒッグス粒子を探してきた。宇宙を満たし、物質に質量を与えると考えられてきた粒子だ。ヒッグス粒子は2012年にようやく発見され、存在を予言した物理学者がノーベル賞を受賞した。そして今回、物理学者らがヒッグス粒子のボトムクォークへの崩壊を観察し、新たな洞察を得た。

 この研究は、ヒッグス粒子の崩壊を予測していた理論素粒子物理学にとっても、数十年がかりで実験装置を建造した欧州原子核研究機構(CERN)にとっても、非常に大きな業績だ。8月24日付けで論文公開サイト「arXiv」に論文が発表され、同時に学術誌「Physics Letters B」に投稿された。

「自分たちの目で確認できるのか、確信はありませんでした」と、ATLAS共同実験グループの副報道官をつとめるCERNの物理学者アンドレアス・ヘッカー氏は打ち明ける。「多くの人が今回の成果に喜んでいますが、なかでもこの実験に長年携わってきた人々の感慨はひとしおです」

 とは言うものの、ヒッグス粒子とは? ボトムクォークとは? 崩壊を確認できたことがなぜ重要? といった疑問を抱く人も多いだろう。順を追って説明していこう。

■ヒッグス粒子とはなにか?

 私たちの宇宙を構成する素粒子とその相互作用について、とてもよく説明できる「標準モデル」という理論がある。ヒッグス粒子はその鍵となる粒子だ。ただ、「ダークマター」や量子レベルでの重力の作用は説明できないが、それでも、すぐれた理論であることは確かである。

 1960年代、物理学者のフランソワ・アングレール氏やピーター・ヒッグス氏らが、標準モデルをアップデートして、光子(光の粒子)などの素粒子が質量をもたず、ほかの素粒子が質量をもっている理由を説明した。彼らは、現在の宇宙はヒッグス場の中に浸っており、ヒッグス場と相互作用する素粒子には2種類があるという理論を提唱した。光子などの素粒子は、そこになにもないかのようにヒッグス場を通過する。対して、ほかの素粒子は、あたかも水飴の中のようにヒッグス場の中を移動する。その抵抗が素粒子に質量を与えるというのだ。

 数十年におよぶヒッグス粒子探しの末、大型ハドロン衝突型加速器(LHC)の研究者たちは2012年にヒッグス粒子を発見したと発表し、アングレール氏とヒッグス氏は2013年にノーベル物理学賞を受賞した。ただし、厳密に言えば、この粒子が標準モデルのヒッグス粒子とまったく一致すると証明されたわけではない。そこで発見以来、物理学者たちは、ヒッグス粒子が理論どおりに振る舞うかどうか検証を続けている。

続きはソースで

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/18/090300386/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/18/090300386/
ダウンロード


引用元: 【物理学】〈続報〉ヒッグス粒子崩壊を確認、物質の質量の起源を解明[09/04]

ヒッグス粒子崩壊を確認、物質の質量の起源を解明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/18(土) 15:51:29.47 ID:CAP_USER
 はじめにブラックホールというと、周りの天体すべてを飲み込み、光さえも飲み込んで2度と外に戻ることがないイメージがある。例えば地球を脱出して宇宙に飛び出すためには、秒速約11キロメートルの速度が必要である。ところがブラックホールの場合は最低でも光の速度、秒速30万キロメートルの速度を出しても外に抜け出せないということになる。

 また地球をブラックホールにしようとすると、質量は同じでも直径が2センチメートルのビー玉くらいの大きさになるという。同じように太陽の場合で考えると、直径6キロメートルにギュウギュウにつぶすと太陽質量のブラックホールになると計算できる。つまりブラックホールは、とても重くてとてつもなく密度が濃いことがわかる。

 そのような異常な天体ブラックホールであるが、大きく分類分けすると、普通の恒星質量のブラックホール(太陽質量の10~数十倍)、銀河の中央に輝く超巨大ブラックホール(太陽質量の100万倍以上)、そしてその中間の質量のブラックホールと3種類あると言われている。今回は「中間質量ブラックホール」を発見するという研究が、2つのチームで行われたとNASAが10日に発表した。

続きはソースで

https://nordot-res.cloudinary.com/t_size_l/ch/images/403131469398131809/origin_1.jpg

財経新聞
https://this.kiji.is/403131533508084833?c=386460825332876385
ダウンロード (3)


引用元: 中間質量ブラックホールの調査に踏み出した科学者たち[08/18]

中間質量ブラックホールの調査に踏み出した科学者たちの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/27(金) 13:13:26.90 ID:CAP_USER
【7月27日 AFP】
国際天文学者チームは26日、超大質量ブラックホールがその近くを高速で通過する恒星に及ぼす重力の影響を観測することにより、理論物理学者アルバート・アインシュタイン(Albert Einstein)が提唱した一般相対性理論の予言の1つが正しいことを初めて確認したとする研究結果を発表した。

 アインシュタインは、音波の波長が伸び縮みすることで通過する列車の音の高さが変化するように聞こえるのと同様に、大きな重力によって光の波長が伸びる可能性があると予測していた。

 独マックス・プランク地球外物理学研究所(Max Planck Institute for Extraterrestrial Physics)が主導する国際研究共同体「GRAVITY」の研究者らは、太陽系を含む天の川銀河(銀河系、Milky Way)の中心にあるブラックホール「射手座A*(Sagittarius A*)」を使えば、アインシュタインの理論を検証するための「申し分のない実験室」ができることに気が付いた。

 ブラックホールは光すら抜け出せないほど強力な重力を持つ極めて高密度の天体。
超大質量ブラックホールの射手座A*は太陽の400万倍の質量を持ち、銀河系で最大のブラックホールとされている。

 研究チームは、5月19日に射手座A*の近くを通過した「S2」と呼ばれる恒星を追跡観測した。S2の移動速度は時速2500万キロ超に及んだ。

 研究チームはさまざまな測定機器を用いてS2の速度と位置を算出し、アインシュタインの予測と比較した。
アインシュタインは重力の影響で光の波長が長くなる「重力赤方偏移」と呼ばれる現象を予言していた。
この赤方偏移はニュートン物理学では説明できない。

続きはソースで

(c)AFP

http://afpbb.ismcdn.jp/mwimgs/b/c/810x540/img_bca707809c0d7179a6f79dbd2a9145e6101067.jpg

AFP
http://www.afpbb.com/articles/-/3183982
ダウンロード


引用元: 【物理学】「アインシュタインは正しかった」 相対性理論の予言の一つを初確認[07/27]

「アインシュタインは正しかった」 相対性理論の予言の一つを初確認の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/12(木) 09:06:54.38 ID:CAP_USER
80年以上前に存在が予言された幻の「マヨラナ粒子」が実際に存在することを世界で初めて実証したと、京都大などのグループが12日付の英科学誌ネイチャーに発表した。電気を通さない固体の中で、電子があたかもマヨラナ粒子のようにふるまう現象を観測したという。将来的には量子コンピューターなどへの応用が期待される。

マヨラナ粒子は、粒子とも反粒子とも区別のつかない「幻の粒子」と言われ、1937年にイタリアの物理学者、エットーレ・マヨラナが理論的に存在を予言した。電気を帯びず極めて質量の小さな素粒子「ニュートリノ」がその本命と考えられているが、証明には至っていない。一方、特殊な条件下の超電導体などでは、電子がマヨラナ粒子のようにふるまう可能性が指摘され、その決定的証拠をつかもうと各国で研究が本格化している。

笠原裕一・京大准教授(物性物理学)らは、東京工業大のチームが合成した磁性絶縁体「塩化ルテニウム」を用い、その内部を伝わる熱の流れが磁場によってどの程度曲がりやすくなるかを、磁場を変化させながら測定した。

その結果、ある範囲の磁場では、磁場や温度を変えても、曲がりやすさの値が普遍的な値の2分の1で一定になった。

続きはソースで

毎日新聞2018年7月12日 02時30分(最終更新 7月12日 02時38分)
https://cdn.mainichi.jp/vol1/2018/07/12/20180712ddm001010024000p/9.jpg
https://mainichi.jp/articles/20180712/k00/00m/040/178000c
ダウンロード


引用元: 【物理】「マヨラナ粒子」 80年以上前に予言された幻の粒子の存在を世界で初めて実証…京大グループ

「マヨラナ粒子」 80年以上前に予言された幻の粒子の存在を世界で初めて実証…京大グループの続きを読む
スポンサーリンク

このページのトップヘ