理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

速度

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/04/12(金) 12:15:19.78 ID:CAP_USER
「G」はなにも物理の授業だけのものではなく、エレベーターやクルマなどでも感じられる、身の回りにありふれたものでもあります。これが激しく大きい戦闘機の場合、どんな影響があり、どのような対策をしているのでしょうか。

■そもそも「G」ってどういうもの?

戦闘機やレーシングカー、宇宙ロケットなど、高速な乗りものと「G」は切っても切り離せないものです。そうした特別な乗りものでなくても、クルマの急発進時や旅客機の離陸時にシートへ身体が押し付けられたり、あるいはジェットコースターでコースの山の頂点にてふわっと浮いたようになったりと、Gを感じるシーンは身近なところにもあります。

ここでいう「G」は加速度、つまり、速度変化するときに物体に働く力の大きさ(比)を表す単位です。その力の大きさの基準(ものさし)となるのは、地球上で物体が自由落下する際の加速度、すなわち「重力加速度」で、これは実際のところ極地と赤道上など地球上の地点により少しばかり異なるものなのですが、上述した「G」はすべて「単位としての重力加速度」を表しており、9.80665m/s2(「S2」は乗数。毎秒、秒速9.80665メートルずつ加速する、の意)と規定されています。

 JAL(日本航空)の「航空実用辞典」によると、旅客機が離陸する際の、後方向のGはおよそ0.3Gから0.5G程度で、垂直方向のGは1.2Gから1.3G程度(重力に加え0.2Gから0.3G)といいます。前者を簡単に言い換えるなら、「地球に引っ張られる力の0.3倍から0.5倍程度の、後ろ方向の力がかかった」ということになります。逆にジェットコースターで浮いたように感じるのは、垂直上方向にGがかかる、すなわち垂直下方向である地球の重力に対し、マイナスのGがかかるためです。

 旅客機の例のように、小数点以下でもそれなりに大きな力を感じるGですが、これが戦闘機になると、急旋回時などに3Gとか5Gなどといった数字が普通に見られるようになります。5Gともなると、地球に引き寄せられる5倍の力がかかるわけで、体重60kgならば300kgに感じる大きさです。ジェットコースターにも、最大4Gを味わえるものがあるそうですが、ほんの一瞬のことであり、戦闘機は場合によって、その状態がしばらく続くこともあります。そしてそれだけ大きな力がかかり続けるとなると、もちろん、体にも影響が出てきます。
https://contents.trafficnews.jp/image/000/027/476/large_190403_ag_01.jpg

■強烈なGがかかり続けると…?

戦闘機が旋回する場合、機首を上げ機体上部を旋回の中心に向けたほうが、旋回半径が小さくなります。そのため、緊急時などを除いて機首を下げるような動きはほとんどありません。よって通常、「戦闘機が旋回する」という場合は機首を上げての動きであり、このときパイロットには、下半身方向へGがかかります。これを「プラス方向のG」といいます。

戦闘機が旋回し続け、パイロットにプラス方向への大きなGがかかり続けると、やがて体内の血液は下半身に集まり始めます。脳への血液供給もとどこおり、するとパイロットの視界は次第にぼやけてきます。やがて視界から色調が失われるグレイアウト、視界が失われるブラックアウトなどが起こり、さらに強いGがかかると、意識を失う「G-LOC(ジーロック)」に至ります。G-LOCそのものは、人体に悪影響をおよぼすことはないといわれていますが、戦闘機パイロットが飛行中に意識を失うことが、どれだけ危険なことなのかは考えなくてもわかります。実際、G-LOCが原因の航空機事故は、過去に何度も発生しています。

 このGがおよぼす影響は人体だけでなく、もちろん機体にも大きな負担になります。機体は材料の工夫などで対策できますが、では生身の人間であるパイロットは、どのようにしてGに耐えているのでしょうか。それは、着用している装備に秘密がありました。

続きはソースで

https://contents.trafficnews.jp/image/000/027/477/large_190403_ag_02.jpg


乗りものニュース
https://trafficnews.jp/post/84990 
ダウンロード (4)


引用元: 【重力加速度】戦闘機パイロットはいかに強烈な「G」と戦う? ジェット戦闘機のネック その対策とは[04/12]

【重力加速度】戦闘機パイロットはいかに強烈な「G」と戦う? ジェット戦闘機のネック その対策とはの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/16(土) 14:50:44.14 ID:CAP_USER
(CNN) 地球に接近してくる小惑星を爆破して衝突を回避する――。そんなSF映画に出てくるような筋書きは、現実的には難しいかもしれないという研究結果がこのほど発表された。

ジョンズ・ホプキンズ大学とメリーランド大学の研究チームによると、小惑星はこれまで考えられていたよりもずっと頑丈で、破壊しようと思えばはるかに強大なエネルギーを必要とすることが分かった。

研究チームは2つの小惑星が衝突するシミュレーションを実施。直径25キロの小惑星に、直径1.6キロに満たない小型の小惑星を秒速4.8キロの速度で衝突させる実験を行った。

過去の実験では、この衝突によって大型の小惑星が砕け散ると予想していた。しかし今回の実験によって、大型の小惑星はあまりダメージを受けないことが分かったという。

続きはソースで

https://www.cnn.co.jp/storage/2019/03/08/2c5bbd2996e952216ec2a6701799758d/t/768/432/d/asteroid-1-super-169.jpg

https://www.cnn.co.jp/fringe/35133916.html
ダウンロード


引用元: 【宇宙】衝突シミュレーション 爆破回避は困難?、小惑星は思ったより硬かった 米研究[03/08]

衝突シミュレーション 爆破回避は困難?、小惑星は思ったより硬かった 米研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/04/04(木) 01:16:51.24 ID:CAP_USER
無風感冷房は、親会社である中国・美的集団(マイディア)の技術を活用した。全自動運転あるいはリモコンの「風ケア冷房運転」ボタンで有効になる。全自動モードの場合、センサーが「人が暑がっている」と判断すると、まず強めの風で一気に室内の空気を冷やしてから無風感冷房に切り替わる。

 無風感冷房では、上下2つのルーバー(風向きを調節する板)で冷房風を同時に吹き出し、数メートル先で干渉させる仕組み。上のルーバーには無数の小さな穴が開けられ、ここを通過した風は周囲の空気を巻き込みながら速度を上げる。
https://image.itmedia.co.jp/news/articles/1904/03/ts153201_daiseikai02.jpg

 下のルーバーは通常の冷房風を送り出すため、風の質と速度の異なる気流がぶつかり、人が風と感じにくい冷気になるという。同社が行った実験では、エアコン本体から2.5メートル離れた床上60センチの地点(ソファーに座っている状態を想定)で風速0.2メートル/秒以下の“無風状態”を確認したとしている。
https://image.itmedia.co.jp/news/articles/1904/03/ts153201_daiseikai01.jpg

続きはソースで

https://image.itmedia.co.jp/news/articles/1904/03/ts153201_daiseikai04.jpg

ITmedia NEWS
https://www.itmedia.co.jp/news/articles/1904/03/news122.html
ダウンロード (10)


引用元: 冷房の風を感じないエアコン、東芝ライフスタイルが発売[04/03]

冷房の風を感じないエアコン、東芝ライフスタイルが発売の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/01(金) 14:15:20.52 ID:CAP_USER
鳥やイルカなど、音声のやり取りを行う動物は多く存在しますが、人間のように即時的で複雑な会話を行う動物は限られています。そんな中、人間にように複雑な会話を行う「歌うマウス」を研究することで、人間の脳が会話をどのように処理しているのかというメカニズムが明かされる可能性が出てきています。
https://i.gzn.jp/img/2019/03/01/songs-of-singing-mice/00.jpg

Motor cortical control of vocal interaction in neotropical singing mice | Science
http://science.sciencemag.org/content/363/6430/983

This singing mouse’s brain could reveal keys to snappy conversation | Science | AAAS
https://www.sciencemag.org/news/2019/02/singing-mouse-s-brain-could-reveal-keys-snappy-conversation

The Songs of Singing Mice May Help Unlock How the Brain Processes Conversation | Technology Networks
https://www.technologynetworks.com/neuroscience/news/the-songs-of-singing-mice-may-help-unlock-how-the-brain-processes-conversation-316156

人間の脳は、他の人のスピーチに含まれる情報をエンコードし、それに対し即座に応答します。マーモセットというサルは、話者を順番に交代するスタイルの人間のようなコミュニケーションを取りますが、やり取りは人間よりもゆっくりとした速度です。

しかし、「Alston’s singing mouse」と呼ばれるマウスは速いスピードで複雑な会話が行えるとして、ニューヨーク大学メディカルセンターの研究者がその脳の働きを調査しました。Alston’s singing mouseのオスは敵を攻撃する時やメスのマウスを魅了する時に歌を歌いますが、この行動は他のマウスと大きく異なると論文の筆頭著者であるMichael Long准教授は語っています。一般的なラボのマウスは短く、無秩序な、超音波の音声を発しますが、Alston’s singing mouseは相手が発話者を特定できるような構造的なシグナルを発することができ、その音声はおよそ100の音色から生み出される比較的長いものとなっています。

Alston’s singing mouseの音声がどんなものなのかは、以下のムービーから確認できます。

Male Alston's singing mouse (S. teguina) singing to female in estrus - YouTube
https://youtu.be/Cwjjxj6ambY


続きはソースで

https://i.gzn.jp/img/2019/03/01/songs-of-singing-mice/02.jpg
https://i.gzn.jp/img/2019/03/01/songs-of-singing-mice/02.jpg

https://gigazine.net/news/20190301-songs-of-singing-mice/
ダウンロード


引用元: 【動物】「歌って会話するネズミ」が人の脳のメカニズム解明のカギとなる[03/01]

「歌って会話するネズミ」が人の脳のメカニズム解明のカギとなるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/15(金) 04:17:53.31 ID:CAP_USER
愛媛大学の松岡良樹氏が率いる国際研究チームは、国立天文台ハワイ観測所の「すばる望遠鏡」における最新鋭の観測装置「超広視野主焦点カメラ(HSC)」を使った観測で、地球からおよそ130億光年離れた遠い宇宙に83個という大量の「巨大ブラックホール」を新たに発見しました。

下の画像で拡大された正方形の範囲の中央、矢印が指し示す赤い点のような天体は、今回すばる望遠鏡が捉えたなかでも一番遠い、130.5億光年先にある巨大ブラックホールです。これまで見つかった最も遠い巨大ブラックホールまでの距離は131.1億光年で、その次は130.5億光年ですから、この発見は2位タイの記録ということになります。
https://sorae.info/wp-content/uploads/2019/03/fig1.jpg


画像を拡大しても見落としてしまいそうなほど小さな点として捉えられた巨大ブラックホールですが、宇宙初期の歴史を理解する上での大きなヒントとなりました。

そもそも、これほどまでに遠い宇宙の観測に挑戦するのはなぜなのでしょうか。それは、遠くにある天体ほど過去の姿を見せているという、広大な宇宙ならではの理由があるからです。

地球上では一瞬で届くように感じる光も、実際には秒速およそ30万kmという限られた速度でしか動けません。天文学で用いられる「光年」という単位は、光が1年間に移動する距離をもとに定められています。

そのため、100光年離れた天体から届いた光は、今から100年前にその天体から放たれた光ということになります。その天体の今この瞬間の姿はわかりませんが、代わりに過去の姿を観測できる、というわけです。

この制約でもあり利点でもある光の性質を利用すると、今からおよそ138億年前に始まったとされる宇宙の過去の様子さえも知ることができます。100億年前の宇宙について知りたければ、100億光年先の天体を観測すればいいからです。

今回の研究では、初期の宇宙における巨大ブラックホールが捜索されました。現在の宇宙では、太陽の100万倍から100億倍という途方もない質量を持った巨大ブラックホールが数多くの銀河の中心に存在していますが、ビッグバンにほど近い初期の宇宙では、現在はあまり見られない「超巨大」なブラックホールしか見つかっていませんでした。それよりも小さく、現在は普遍的な「巨大」ブラックホールは初期の宇宙に存在しなかったのか、それともその頃から同じように存在していたのかは、わかっていなかったのです。

そこで研究チームは、すばる望遠鏡の「超広視野主焦点カメラ」が300夜に渡って観測した膨大な数の天体から、巨大ブラックホールの存在を示す「クエーサー」という天体に注目しました。

クエーサーとは、周囲の物質を貪欲に飲み込むことで強烈な光を放つ、活発な巨大ブラックホールのことを指します。ブラックホール自身は光を放ちませんが、その周囲を飲み込まれそうになりつつ高速で回転するガスや塵が非常に強いエネルギーを放つことで、巨大ブラックホールが収まっている銀河全体よりも明るく輝いて見えるのです。

その結果、宇宙の誕生から10億年も経たない約130億光年という遠方に、これまで見つかっていなかった83個のクエーサーを新たに発見するとともに、過去に報告例のあった17個のクエーサーを再発見することに成功したのです。

下の画像は「超広視野主焦点カメラ」が捉えた合計100個のクエーサーを並べたものです。上から7段目までが新発見のクエーサーで、下の2段が再発見されたクエーサーとなります。

続きはソースで

https://sorae.info/wp-content/uploads/2019/03/fig4.jpg

https://subarutelescope.org/Pressrelease/2019/03/13/j_index.html

https://sorae.info/030201/2019_3_14_subarutelescope.html
ダウンロード (2)


引用元: 【天文学】「すばる望遠鏡」が130億光年彼方の巨大ブラックホールを大量に発見[03/14]

「すばる望遠鏡」が130億光年彼方の巨大ブラックホールを大量に発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/16(土) 14:17:11.67 ID:CAP_USER
■流れさえあれば自然にできる、初めて実証

滝はどうやってできるのか?

 これまで多くの科学者は、滝の形成には何らかの外部要因が必要と考えてきた。例えば、水が落ちる段差は、地震でできたのかもしれない。これは速いプロセスだ。一方、海面の上下や、異なる種類の岩が異なる速度で浸食されるなど、非常に遅いプロセスもあるとされてきた。

 しかし、3月13日付けで学術誌「ネイチャー」に発表された論文によると、そうした劇的な変化や外からの力は必ずしも必要ないのだという。川の流れさえあれば、川底が1種類の岩でできていたとしても、岩盤が削られて急勾配ができ、自然に滝が形成されることが示唆された。

■「ひとりでに出来ることもあるんだ」

「これまでは地質や滝の情報から地球史上の変化を読み解けるとされてきましたが、新たな形成メカニズムによってそう考えるのは難しくなります」と、今回の論文の著者ジョエル・シャイングロス氏は話す。同氏は現在、米ネバダ大学リノ校の助教を務めている。

 今回の研究はまだ予備段階で、研究室レベルでのシミュレーションに過ぎないと同氏は注意をうながす。ただし、科学者が地形の浸食の要因を解釈する際には、これまでのやり方を見直す必要があると同氏は言う。

「この論文は、まるで『ちょっと待つんだ、みんな。これらの地形は、必ずしも何かの外部要因や局所的要因で作られたわけじゃない。

続きはソースで

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/19/031500162/02.jpg

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/19/031500162/
ダウンロード (1)


引用元: 【地質学】滝はどうやってできるのか、形成メカニズムに新説[03/16]

滝はどうやってできるのか、形成メカニズムに新説の続きを読む
スポンサーリンク

このページのトップヘ