理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

速度

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/15(水) 15:54:12.50 ID:CAP_USER
カチカチに乾燥したスパゲッティの乾麺を両手で持ってアーチ型に曲げて折ろうとすると、まず間違いなく3つ以上に折れてしまうという不思議な現象が存在します。誰がどれだけ頑張っても決して逃れられなかった「スパゲッティ折りのミステリー」をついに乗り越え、スパゲッティをキレイに2つに折ることに成功した研究者が現れました。

Controlling fracture cascades through twisting and quenching | PNAS
http://www.pnas.org/content/early/2018/08/09/1802831115

MIT mathematicians solve age-old spaghetti mystery | MIT News
http://news.mit.edu/2018/mit-mathematicians-solve-age-old-spaghetti-mystery-0813

「スパゲッティの乾麺は必ず3つ以上に折れる」という不思議な現象は、ノーベル賞科学者のリチャード・P・ファインマンが見つけて世界に問いかけたものです。鉛筆や木の棒など、細長いものを曲げると大抵の場合は真ん中あたりから真っ二つに折れるものですが、ことスパゲッティに関しては「誰がやっても絶対に2つに折ることはできない」ということが明らかにされていました。


「なぜスパゲティだけが?」というこの現象の謎は2005年、パリにあるピエール・アンド・マリー・キュリー大学の物理学者バジル・オードリー氏とセバスチャン・ノイキルヒ氏によって解明されています。両氏は「カタパルト実験」と呼ばれる実験を繰り返すことで、スパゲティが最初に折れた時に生じる「たわみ」が伝わる時に波が合成されて強くなり、新たな折れ目が作られているという実態を明らかにして、「ひびの連鎖による細い棒の破砕――なぜスパゲティは半分に折れないのか」という論文を発表。この発表の翌年、2006年にオードリー氏とノイキルヒ氏はイグノーベル賞を受賞しています。

「なぜスパゲティは2本でなく 3本に折れるのか」を解く : 連載一覧 : さぽナビ | Z会
https://www.zkai.co.jp/el/saponavi_a/bkmsk40000000cm9.html

その論文では「スパゲッティは必ず3つ以上に折れる」ことの原因が解明されたのですが、今度は逆に「2つに折る方法はないのか」という謎に取り組んだ科学者が現れました。それはコーネル大学の大学院生であるロナルド・ハイザー氏とマサチューセッツ工科大学(MIT)の大学院生であるビシャール・パティル氏らのチームです。

日常の会話の中から「スパゲッティを2つにある方法があるのではないか」と考えた2人は、まずスパゲッティを手で持ってさまざまな方法で曲げることでその折れ方を検証。その後、専用の「折り曲げ機」を開発することで、より詳細なスパゲッティの折れ方を調査するに至りました。

そして研究の結果、2人がたどり着いた答えは「スパゲッティを一定以上の角度にねじっておいた状態で曲げていくと2つに折ることができる」という結論でした。

続きはソースで

https://i.gzn.jp/img/2018/08/14/old-spaghetti-mystery-solved/snap00022_m.jpg
https://i.gzn.jp/img/2018/08/14/old-spaghetti-mystery-solved/snap00021_m.jpg
https://i.gzn.jp/img/2018/08/14/old-spaghetti-mystery-solved/snap00012_m.jpg

https://gigazine.net/news/20180814-old-spaghetti-mystery-solved/ 
ダウンロード (9)


引用元: 【話題】「スパゲッティの乾麺は必ず3つ以上に折れる」という現象を乗り越えて研究者が2つに折ることに成功[08/15]

「スパゲッティの乾麺は必ず3つ以上に折れる」という現象を乗り越えて研究者が2つに折ることに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/22(日) 19:44:21.91 ID:CAP_USER
■脅威が増すスペース・デブリ - 宇宙のゴミ問題のいま

地球のまわりを回る、無数の「スペース・デブリ」(宇宙ゴミ)。
日本ではSF作品『プラネテス』や映画『ゼロ・グラビティ』の影響もあっておなじみのこの問題は、最悪の場合、人類が宇宙に出ていくことすらできなくなる危険性をはらんでいる。

この脅威に対して、少しずつではあるものの対策が進みつつある。
そして、その大きな有効打となりうる「デブリ除去」も実現のきざしが見えつつあり、2018年4月には欧州が開発した試験衛星「リムーヴデブリ」が打ち上げられた。
しかし、この宇宙のゴミ問題を解決するためには、まだ課題もある。

■スペース・デブリ問題のいま

1957年に世界初の人工衛星「スプートニク」が打ち上げられて以来、人類はこれまでに約8000機の衛星を打ち上げてきた。
そのうち、現在も稼働している衛星は1500機ほどとされる。

しかし、これは現在軌道上にある衛星が1500機、という意味ではない。
古くなって大気圏に落下したり、宇宙船のように地球に返ってきた衛星はあるものの、機能を停止したものも含めると、5000機近い衛星が地球を回っている。

そして、地球を回っている物体はそれだけではない。人工衛星を打ち上げるときには、ロケットの機体や搭載機器のカバーなど、余計なものも軌道に乗ってしまう。また、衛星が爆発・分解したり、衛星同士が衝突したり、衛星を破壊する実験をおこなったりしたことで、数多くの破片も生み出されている。

こうした機能を停止した衛星や、打ち上げ時に発生した部品、新たに発生した破片などのゴミのことを、文字どおり宇宙ゴミ、「スペース・デブリ」と呼ぶ。

現在、軌道上にある物体の多くは、米空軍の18 SPCS(18 Space Control Squadron)という組織が、世界各地に設置したレーダーや望遠鏡を使って追跡している。同隊によると、2018年4月現在、約1万8922個の物体を追跡している。

約2万個という数でも驚きだが、しかしこの数はあくまで、追跡できるものに限ったものである。
18 SPCSは低軌道で約10cm以上、静止軌道で約1m以上の物体を追跡することができるが、当然それよりも小さな物体も数多く存在する。米国航空宇宙局(NASA)などの推計によれば、1cm以上の物体は50~70万個、
1mm以上のものだと1億個以上存在すると考えられている。

こうした小さなデブリも、それぞれ地球のまわりを秒速数kmという高速で飛んでいる。
もし衛星と衝突すれば、機能停止どころか、新たに破片を生み出すことになり、あるいはデブリ同士が衝突しても、やはり新たに細かな破片が生まれる。

もちろんデブリの中には大気圏に落下していくものもあるが、長い間残り続けるものも多く、その間になにかと衝突するなどし、新たなデブリを生み出す発生源にもなる。ある研究では、大気圏に落ちて軌道からなくなるデブリの数よりも、新たに生み出されるデブリのほうが多いとされ、今後もその数は増加していくと予測されている。

さらにある研究では、デブリが衝突して新たにデブリが生まれ、さらにそのデブリがまた別のデブリに衝突し……と、デブリが"自己増殖"し続ける可能性も指摘されている。これを「ケスラー・シンドローム」と呼ぶ。
これはあくまで最悪のケースを考えた場合であり、計算に使うモデルや、そもそもの前提となるデブリの推定数などによって、こうしたことは起きない、起こる可能性は低い、とする研究結果もある。

続きはソースで

欧州が打ち上げたデブリ除去の試験衛星「リムーヴデブリ」の想像図
https://news.mynavi.jp/article/20180706-659876/images/001.jpg
地球低軌道にあるデブリの想像図。
https://news.mynavi.jp/article/20180706-659876/images/002.jpg
静止軌道やその周辺にあるデブリの想像図
https://news.mynavi.jp/article/20180706-659876/images/003.jpg

マイナビニュース
https://news.mynavi.jp/article/20180706-659876/
ダウンロード


引用元: 【宇宙開発】欧州、「宇宙ゴミ除去衛星」を打ち上げ - デブリ問題の現状と課題

欧州、「宇宙ゴミ除去衛星」を打ち上げ - デブリ問題の現状と課題の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/31(火) 19:31:23.60 ID:CAP_USER
パデュー大学、北京大学、清華大学、量子物質科学共同イノベーションセンター(北京)などの研究チームは、ナノ粒子を毎分600億回という超高速で回転させる技術を開発したと発表した。人工物としてはこれまでで最も高速で回転するナノスケールのローターであるとしている。量子力学における真空の性質などを調べるための実験ツールとして利用できるという。研究論文は「Physical Review Letters」に掲載された。

レーザーによる光ピンセットの技術を用いて、170nm径サイズのシリカからなるダンベル型ナノ粒子を真空中に浮かべ、これを振動または回転させた。直線偏光しているレーザー光を用いるとナノ粒子は振動し、円偏光のレーザー光を用いるとナノ粒子を回転させることができる。

空中で振動するダンベル型ナノ粒子は、一種のトーションバランス(ねじり秤)として機能する。トーションバランスは微小なモーメントの測定に適しており、1798年に英国の科学者ヘンリー・キャヴェンディッシュが行った万有引力定数と地球の密度を測定する実験で使われたことでも知られる。

キャヴェンディッシュのトーションバランスは、両端に鉛球のついた天秤棒を細いワイヤーで吊り下げてバランスさせた装置であった。

続きはソースで

パデュー大学研究チームのTongcang Li氏とJonghoon Ahn氏 (出所:パデュー大学、写真:Vincent Walter)
https://news.mynavi.jp/article/20180731-672019/images/001l.jpg

(左)直線偏光のレーザー光によってダンベル型ナノ粒子が変位角θで振動。
(右)円偏光のレーザー光によってダンベル型ナノ粒子が回転 (出所:パデュー大学)
https://news.mynavi.jp/article/20180731-672019/images/002l.jpg

https://news.mynavi.jp/article/20180731-672019/
images


引用元: 【ナノテク】毎分600億回転するナノローターを開発、真空の謎解明に利用

毎分600億回転するナノローターを開発、真空の謎解明に利用の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/27(金) 08:33:56.80 ID:CAP_USER
東京大学の研究グループは2018年7月、水素吸蔵材料であるパラジウム(Pd)の表面に金(Au)を混ぜることにより、水素の吸収速度が40倍以上高まることを発見したと発表した。

 近年新しいエネルギーとして注目を集めている水素。その利用拡大には、水素の輸送や貯蔵方法の確立が必要とされている。その1つとして、輸送が行いやすいなどのメリットから、水素吸蔵材料を利用した貯蔵方法の研究開発が進んでいる。

 水素吸蔵材料であるパラジウムは、水素を吸収する金属であり、水素のみを透過させることから水素純化膜の材料などとして利用されている。水素の透過には、水素の表面への吸着、表面から試料内部への侵入、試料内部での拡散の過程があるが、パラジウムでは表面からの水素吸収速度が遅いという問題があった。一方で金は水素を吸収せず、また表面にも水素をほとんど吸着しないことから、水素の吸収に対しては役に立たないと考えられていた。

 今回、東京大学の研究グループは、パラジウム単結晶の表面に金を蒸着して加熱することにより、表面にパラジウムと金の合金層を作成し、昇温脱離法と共鳴核反応法を用いて水素の表面付近での振る舞いについて調べた。-153℃に冷却したパラジウムに水素を吸収させた後に加熱すると、昇温脱離法では-120℃に試料内部に吸収された水素の放出によるピーク、27℃に表面に吸着した水素の脱離によるピークが見られた。一方で、表面に金の合金層を作成して同様の実験を行った場合、吸収された水素によるピークが増大し、表面に吸着した水素によるピークは減少して低温側にシフトすることが分かった。共鳴核反応法により水素の深さ分布を測定すると、金の合金層がある場合に、表面から数層深い領域で水素の吸収量が増大していることが明らかになった。

続きはソースで

共鳴核反応法による水素の深さ分布。水素量に比例するガンマ線収量が金との合金化によって増加する 出典:東京大学
http://image.itmedia.co.jp/smartjapan/articles/1807/24/rk_180723_suiso01.jpg

http://www.itmedia.co.jp/smartjapan/articles/1807/24/news022.html
ダウンロード


引用元: 【エネルギー】「金」で水素の吸収速度が40倍に、水素吸蔵合金の高性能化に期待[07/24]

「金」で水素の吸収速度が40倍に、水素吸蔵合金の高性能化に期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/04(水) 17:57:48.30 ID:CAP_USER
水泳のクロールで速く泳ごうとすればするほど、キック動作(バタ足)は前に進む力に貢献しにくくなる――。こんな研究結果を、筑波大と東京工業大の研究チームがまとめた。秒速1・3メートル(100メートルのタイムで76秒92に相当)より速くなると、足の動きで生じる水の抵抗が大幅に増えるという。生体工学の専門誌「ジャーナル・オブ・バイオメカニクス」に論文が掲載された。

研究チームによると、クロールのバタ足は下半身を持ち上げて水平に近い姿勢をとるためには必須で、抵抗を減らすのに貢献していると考えられてきた。

クロールで速く泳ごうとすると腕の回転も増やす必要がある。

続きはソースで

(杉本崇)

朝日新聞 2018年7月4日11時09分
https://www.asahi.com/articles/ASL732TJ1L73ULBJ002.html
論文
https://doi.org/10.1016/j.jbiomech.2018.05.027
ダウンロード


引用元: 【スポーツ科学】クロールのバタ足、速くなる効果なし むしろ水の抵抗が増える

クロールのバタ足、速くなる効果なし むしろ水の抵抗が増えるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/27(水) 13:25:12.31 ID:CAP_USER
宇宙航空研究開発機構(JAXA)の小惑星探査機「はやぶさ2」は2018年6月27日9時35分(日本時間)、目的地の小惑星「リュウグウ」に到着しました。

はやぶさ2は2014年12月3日の打ち上げから約3年半の飛行を経て、現在地球から2.8億km(地球と太陽の距離の1.9倍)の距離にある小惑星リュウグウに到着しました。
到着と言っても着陸したわけではなく、地球から見てリュウグウの手前に約20km離れた、予定の位置に停止(リュウグウとの位置関係が変わらない状態)しています。
この状態ではやぶさ2が正常に作動していることを確認して、「到着」ということになりました。

JAXAのはやぶさ2運用チームは7:10に、はやぶさ2とリュウグウの速度差を秒速1cm以下にするための最後の命令を送信。
はやぶさ2は9:30に横方向、9:35に減速方向の噴射を行いました。
はやぶさ2と地球の間は光速でも16分かかるため、16分後の9:51から、はやぶさ2の速度や噴射結果を確認。

続きはソースで

https://sorae.info/wp-content/uploads/2018/06/20180627_haya2_1.jpg
https://sorae.info/030201/2018_06_27_hayabusa2_1.html
images (4)


引用元: 【はやぶさ2】小惑星リュウグウへ到着!いよいよ探査を開始へ[06/27]

【はやぶさ2】小惑星リュウグウへ到着!いよいよ探査を開始への続きを読む
スポンサーリンク

このページのトップヘ