理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

量子もつれ

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/07/17(水) 00:57:22.05 ID:CAP_USER
「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功(記事全文は、ソースをご覧ください。)
https://wired.jp/2019/07/16/quantum-entanglement-photo/
2019.07.16 TUE 18:00
WIRED,TEXT BY SANAE AKIYAMA

2つの粒子が強い相互関係にある「量子もつれ」と呼ばれる現象を、英大学の研究チームが世界で初めて画像に記録することに成功した。今回の実験で得られた画像処理の技術は、量子コンピューティングや量子暗号の進化にも貢献することが期待されている。

(写真)PHOTOGRAPH BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW
https://wired.jp/wp-content/uploads/2019/07/quantum-og.jpg

ミクロの世界を正しく説明するうえで欠かせない量子力学に、「量子もつれ」と呼ばれる現象がある。量子もつれとは、2つの粒子が強い相互関係にある状態であり、粒子のスピン、運動量などの状態をまるで「コインの裏表」のように共有する運命共同体のような状態を指す。

例えば、一方の粒子を観測したときのスピンが上向きであれば、もう一方は瞬時に下向きになる。このような量子もつれにある2粒子間の状態は、どれほどの距離──たとえ銀河の端から端という途方もない隔たりがあろうが、維持されるのだという。この同期の速度が光の速度を超えるという、まるで空間など存在していないかのような非局所性から、偉大な物理学者アルバート・アインシュタインが、かつて「不気味な遠隔作用」と呼んだほどだ。

そんな量子もつれの状態を画像に収めることに、このほど英国のグラスゴー大学の研究チームが成功した。量子もつれの状態にある光子の様子を捉え、オープンアクセスの科学学術誌『Science Advances』で画像を公開したのだ。これは、量子もつれの判断基準とされる「ベルの不等式」の破れをもとに量子もつれを実験的に可視化する技術で、もつれ状態にある粒子ペアがひとつの画像に収められたのは今回が初めてだという。

・かくして「量子もつれ」は画像に記録された
マクロの世界における物質の状態は、観測者がいるかどうかに関わらず、すでに決定している。対してミクロの世界では、量子が実際にどのような状態にあるのかは、何かに“観測される”まで不確定だと考えられている。これまで量子もつれ現象は実験的には立証されていたものの、「観測されるまで状態が決定されない量子もつれ」を、いかに画像に収めるのかという実験的セットアップを考案するのは至難の業だった。

今回の実験では量子もつれ状態を確認するため、「ベルの不等式」と呼ばれる式が使用されている。「ベルの不等式」は、古典的に説明できる粒子の相関関係の上限を示した数式で、これによって実験が「量子的」なものなのか「古典的」に説明できるものなのかを区別できる。「ベルの不等式」の上限が破られると、実際に2つの粒子が量子もつれの状態にあることが示される。

(画像)研究チームは自発的パラメトリック下方変換(SPDC)と呼ばれる手法を用いて量子もつれ状態をつくりだした。IMAGE BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW
https://wired.jp/wp-content/uploads/2019/07/F1.large_-e1563242598410.jpg

研究チームは、自発的パラメトリック下方変換(SPDC)と呼ばれる手法によって、まず光子をもつれ状態にした。次にビームスプリッターによって光子対を2つに分割する。光子1の通路には通過の際にランダムに位相が決まるフィルター(0°、45°、90°、135°)を設置してあり、光子2はフィルターを通過せずにまっすぐに進む。研究チームは、光子1と、もつれた光子2の両方を同じタイミングで捉えたときにのみ検出できる超高感度カメラを設置し、これらの可視記録を作成した。

4つの異なる位相において見られる量子のもつれ画像は、実に4万フレームを組み合わせたものだ。光子ペアはフィルターを通る前に分割されているにもかかわらず、両方がフィルターの位相と同じ相転移をしているのが見てとれる。

■■略

https://wired.jp/wp-content/uploads/2019/07/F2.large_-e1563242997968.jpg
(画像)4つの異なる位相において見られる量子のもつれ画像は、実に4万フレームを組み合わせたものだ。光子ペアはフィルターを通る前に分割されているにもかかわらず、両方がフィルターの位相と同じ相転移をしているのが見てとれる。IMAGE BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW

続きはソースで

WIRED
ダウンロード



引用元: 【量子力学】「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功[07/17]

「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/24(日) 14:42:41.19 ID:CAP_USER
量子力学の理論によると「量子もつれ」状態にある粒子ペアは、一方の粒子を状態を測定すると、互いがどんなに離れていても、ただちにもう一方の粒子の状態に影響を及ぼす。直感に反するこの特性の根底に「隠れた変数理論」があるのかどうかを調べるため、前例のない規模の実験が実施された。もし、隠れた変数理論が存在すれば、量子暗号は完全に安全とは言えないことになる。

好奇心をそそられる質問がある。物理現象には原因のないものがあるのだろうか、それとも、すべての作用には理由があるのだろうか?

この難問は基礎科学の最も奇妙な分野の1つである量子物理学における核心的な質問だ。科学史上最大級の人物たちを悩ませてきた質問でもある。

この問題はまた、量子コンピューターや量子暗号などの新テクノロジーにとって重要な意味を持つ。もしかすると、原因と結果についての人々の理解を変えかねない、全く新しい科学分野の核心となる問題かもしれない。

今日、この質問に対する1つの答えが得られている。スペインのバルセロナ科学技術研究所(Barcelona Institute of Science and Technology)のモーガン・ミッチェル博士と数十人の共同研究者、および量子理論の最も混乱を呼ぶ予測に関するかつてない実験に参加した、世界中の10万人を超えるボランティアのおかげである。

ミッチェル博士らの結論は、すべての作用に説明が必要なわけではないというものだ。ミッチェル博士と共同研究者たちは、「もし人間の意思が自由だとすれば、原因のない物理現象が存在します」という。実証に基づく科学的手法を使って、自由意思という形而上学的概念を初めて基礎物理学とリンクさせた研究と言える。

まず、背景について少し説明しよう。量子力学の奇妙な特性の1つに、空間的、時間的に同じポイントに生成された複数の量子粒子が同じ存在を共有できることがある。このような関連は「量子もつれ(エンタングルメント)」と呼ばれ、粒子同士が動いてどれだけ離れても相互の関連は損なわれない。

続きはソースで

https://www.technologyreview.jp/s/88840/how-the-nature-of-cause-and-effect-will-determine-the-future-of-quantum-technology/
ダウンロード


引用元: 【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験

【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/02/22(木) 02:57:54.77 ID:CAP_USER
東京理科大学の藤原理賀助教らの研究グループは、カムチャッカ半島のトルバチク火山で発見された鉱物を実験・理論の両側面からその内部磁気状態を調べた。
この結果、同物質の低温磁気状態が、一次元的に強い量子もつれを持った「ホールデン状態」であることを発見した。

 スピン(電子の角運動量の自由度)の大きさが整数の場合の低温状態をホールデン状態と呼ぶ。
この状態では、スピン間に強い量子もつれ(状態の重ね合わせによって現れる、異なる量子間の相関効果)があり、一次元鎖の両端に位置する2つのスピンに、2量子ビット(量子計算の情報単位)に相当する自由度が現れる。

 また、この状態を積極的に活用した量子コンピュータの開発が、基礎科学・工学応用の両側面から期待されている。
一方で、ホールデン状態の再現には、整数スピンが必要であり、これを実現する元素は非常に限られているため、これまで積極的に応用への試みがなされていなかった。

続きはソースで

論文情報:
【Physical Review Letters】Cluster-Based Haldane State in an Edge-Shared Tetrahedral Spin-Cluster Chain: Fedotovite K2Cu3O(SO4)3
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.077201

大学ジャーナル
http://univ-journal.jp/19359/
images


引用元: 【量子コンピュータ】 カムチャッカ半島産の鉱物中に量子ビット 東京理科大学が発見[02/20]

【量子コンピュータ】 カムチャッカ半島産の鉱物中に量子ビット 東京理科大学が発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2015/03/31(火) 02:42:38.79 ID:???.net
掲載日:2015年3月31日
http://eetimes.jp/ee/articles/1503/31/news029.html

no title


|1m2サイズを26×4mmサイズに

 東京大学大学院工学系研究科の古澤明教授の研究グループとNTT先端集積デバイス研究所は2015年3月31日、量子テレポーテーション装置の心臓部となる量子もつれ生成・検出部分を光チップで実現することに成功したと発表した。光学部品を不要とすることで、同様の回路をこれまでの1万分の1のサイズに縮小した。

 今回の研究成果は、量子テレポーテーションの手法を用いて量子コンピュータを実現できることを示した。
この成果は、英国の科学雑誌「Nature Photonics」(現地時間2015年3月30日)に、論文「Continuous-variable entanglement on a chip」として掲載された。

開発したチップ 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU998.jpg

|量子オペアンプである量子テレポーテーション

量子テレポーテーションのイメージ 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg

 エネルギー消費が極めて小さい超高速コンピュータを実現する技術として量子コンピュータが注目されている。
これを実現するためには、大量の量子ロジックゲートを作り込む必要がある。その手法として、古澤氏らの研究グループは、光子に乗せた量子ビットの信号を転送する量子テレポーテーション技術に注目し、開発に取り組んできた。

 量子テレポーテーションとは、光子に載せた量子ビット*)の信号(光量子ビット)を、ある送信者から離れた場所にいる受信者へ転送する技術。これまでにない大容量通信を実現するとされる量子力学の原理を応用した「量子通信」を実現する上で最も重要な技術とされている。さらに、量子テレポーテーションを行う装置を組み合わせることで、超高速な処理性能を持つ「量子コンピュータ」も構築できるという。

*)0と1の重ね合わせで表示される情報単位。重ね合わせとは0と1が同時並行で存在するような一種の中間状態で、量子力学特有の状態。重ね合わせをうまく利用することで、高い処理性能の情報処理が実現できる

量子力学を応用した情報処理の可能性 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU000.jpg

|2013年に「完全な量子テレポーテーション」を実現 


 古澤氏らの研究グループは2013年に、量子(光子)の波動性に着目して完全な量子テレポーテーション*)の実験に成功しており、従来に比べて100倍以上の効率で量子テレポーテーションを行う方法を見いだしていた。

*)関連記事:完全な量子テレポーテーションに成功
http://eetimes.jp/ee/articles/1308/19/news028.html

 ただ、2013年当時の実験装置は、光学テーブルの床面積が4.2×1.5mと大きく、この装置には500点以上の
ミラーやレンズなどの光学部品を使って回路を構成するなど、実用化には程遠かった。

013年当時の量子テレポーテーション用実験装置の写真。4.2×1.5mの大きさがあり、ミラーやレンズなどの光学部品を配置しレーザー光の経路を作っている。使われているミラー、レンズの数は500枚以上におよび、調整に長い時間を要した 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU002.jpg
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU003.jpg

続きはソースで
<参照> 
日経プレスリリース - 東大、量子テレポーテーション心臓部の光チップ化に成功 
http://release.nikkei.co.jp/detail.cfm?relID=383336&lindID=5 

Continuous-variable entanglement on a chip : Nature Photonics : Nature Publishing Group 
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2015.42.html


引用元: 【量子力学/量子情報】量子テレポーテーションの心臓部をチップ化――量子コンピュータ実用化へ「画期的成果」

量子テレポーテーションの心臓部をチップ化――量子コンピュータ実用化へ「画期的成果」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2014/09/22(月) 13:57:19.09 ID:???.net
【9月22日 AFP】光子の量子状態を結晶体に転送する「量子テレポーテーション」実験で、過去最長記録となる25キロメートルの転送に成功したと、スイス・ジュネーブ大学の物理学者チームが21日、英科学誌「ネイチャー・フォトニクス」で発表した。

同大の光ファイバー上で行われた今回の実験では、同チームが2003年に達成した6キロの記録が更新された。
研究チームは声明で、今回の実験により「光子の量子状態は、結晶体への転送中に、この2つが直接的に接触していなくても維持され得る」ことが判明したと述べている。

量子テレポーテーションは、「量子もつれ」の関係にある1組の原子粒子が、距離を隔てていても一心同体の双子のような反応を示すとの理論に基づいている。

量子粒子は原理的には、現在のコンピューターの2進コードよりもはるかに大量のデータを運ぶのに使えるかもしれない上、情報の解読も不可能であるため、暗号研究者らの大きな関心の的となってきた。

「もつれ」関係にある2粒子の片方に触れるだけで、メッセージは完全に消去されることになる。
そのため、光にコード化された量子データを実際の通信において情報を壊さずに保存・処理する方法を見つけることが、大きな課題となっている。

この課題を探究している研究チームは「量子もつれ」状態にある光子2個の一方を長さ25キロの光ファイバーの中に進ませ、もう一方の光子を結晶体に送って光子の持つ情報を保存した。

そして3個目の光子を、ビリヤードのように光ファイバーの中にある最初の光子に向けて打ち出し、衝突させると、光子は両方とも消滅した。研究チームはこの衝突を測定し、3番目の光子が持っていた情報は破壊されず、もつれ状態にある2番目の光子を含む結晶体にたどり着いていることを発見した。

実用可能な量子テレポーテーションがはるかかなたの目標であることに変わりはないが、今回の成果は注目すべき実験的な進展だと研究チームは話している。(c)AFP
http://www.afpbb.com/articles/-/3026612

Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Nature Photonics (2014) doi:10.1038/nphoton.2014.215
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2014.215.html

引用元: 【物理】量子テレポーテーションの記録を更新、過去最長25kmの転送に成功 ジュネーブ大

量子テレポーテーションの記録を更新、過去最長25kmの転送に成功 ジュネーブ大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2014/08/29(金) 23:16:58.90 ID:???.net
ウィーン大学の研究グループは8月27日、量子もつれ効果を利用して被写体に一度も当たっていない光子を使い、猫の像を映し出すことに成功した。

 実験を行ったのはウィーン大学量子科学研究センターのツァイリンガー(Zeilinger)氏が指導するグループ。
量子もつれ効果(エンタングルメント)によって作られた粒子対はたとえどんなに離れていても相互に影響を及ぼす相関状態となり、量子暗号通信などの基本となっている。

 実験は、レーザー光を分割するビームスプリッター(ハーフミラー)と波長を変換する非線形結晶を組み合わせたもので、被写体からの光(実際にはビームの間に入れた切り抜きのシルエット)が撮像素子には届いていないにもかかわらず、量子もつれ効果による作用で猫のシルエットが映像化された。

 まだ遠隔映像(被写体からの反射した光子を使う)を撮影する「量子もつれデジカメ」と呼ぶにはまだ早い段階ではあるが、被写体から出る光子に依存しない情報によって映像を得ることはまったく新しいイメージング手段であり、さまざまな可能性を開くものとしている。

http://ascii.jp/elem/000/000/927/927839/
http://ascii.jp/elem/000/000/927/927836/cat_Praticia_Enigl_IQOQI_web_596x.jpg

引用元: 【物理】量子もつれ効果で猫を撮影、ウィーン大

【スゴイ!】量子もつれ効果で猫を撮影、ウィーン大の続きを読む
スポンサーリンク

このページのトップヘ