理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

量子力学

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/09/06(水) 23:33:13.15 ID:CAP_USER
2017.09.06
量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~:物理工学専攻 伊與田英輝助教、金子和哉さん(D1)、沙川貴大准教授

東京大学大学院工学系研究科物理工学専攻の伊與田英輝助教、金子和哉大学院生、沙川貴大准教授は、マクロ(巨視的)な世界の基本法則で、不可逆な変化に関する熱力学第二法則を、ミクロな世界の基本法則である量子力学から、理論的に導出することに成功しました。
これは、極微の世界を支配する「量子力学」と、私達の日常を支配する「熱力学」という、二つの大きく隔たった体系を直接に結び付けるものです。
本研究では、量子多体系の理論に基づき、単一の波動関数(注4)で表される量子力学系において、熱力学第二法則を理論的に導きました。 

続きはソースで

プレスリリース本文:/shared/press/data/setnws_201709061614152431248138_195100.pdf
Physical Review Letters:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.100601#fulltext

▽引用元:東京大学大学院工学系研究科 プレスリリース 2017.09.06
http://www.t.u-tokyo.ac.jp/soe/press/setnws_201709061614152431248138.html
http://www.t.u-tokyo.ac.jp/shared/press/images/setnws_201709061614152431248138_761028.jpg

ダウンロード (4)


引用元: 【物理】量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~/東京大©2ch.net

量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~/東京大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/03/22(水) 21:05:17.90 ID:CAP_USER
荒井聡
[2017/03/22]
ウィーン大学とオーストリア科学アカデミーは、量子力学の対象となるミクロの世界において、ある時計の時刻を正確にすることによって、周囲の時計がその影響を受け、不正確になる効果があることを解明した。
これは量子力学と一般相対性理論から導かれる根本的な効果であり、時間測定の物理的限界を示すものであるという。研究論文は、「米国科学アカデミー紀要(PNAS)」に掲載された。

この図のように、一般相対性理論では、空間のどのポイントでも他から影響を受けずに正確に時刻を測れる理想的な時計を考えることができる。
しかし、量子力学も考慮に入れた場合、隣り合う時計同士は互いに独立ではなく、干渉しあって時間が不正確になる(出所:ウィーン大学)
http://n.mynv.jp/news/2017/03/22/171/images/001l.jpg

日常的な世界では、時計によって周囲の時空が変化したり、ある時計が近くの時計に影響を及ぼしたりするといったことはないと考えられている。
また、複数の時計を使えば、近接している複数の場所で、いくらでも正確に時間を測定することができると考えられる。

研究チームは今回、このような常識が量子力学的な世界では成り立たないことを、量子力学と一般相対性理論を組み合わせることによって示した。

量子力学の世界では、粒子の位置と運動量のような互いに関係のある物理量を同時に測定するとき、その測定精度には「ハイゼンベルグの不確定性原理」と呼ばれる限界があることが知られている。
粒子の位置を正確に決定しようとすると、その粒子の運動量は確定できなくなる。逆に、粒子の運動量を確定しようとすると、その粒子の位置は確定できなくなってしまう。

続きはソースで

http://news.mynavi.jp/news/2017/03/22/171/
※本記事は掲載時点の情報であり、最新のものとは異なる場合があります。予めご了承ください。
images


引用元: 正確な時計に影響を受け、周囲の時計が不正確になることを解明 - ウィーン大 [無断転載禁止]©2ch.net

正確な時計に影響を受け、周囲の時計が不正確になることを解明 - ウィーン大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/10/24(月) 21:24:22.36 ID:CAP_USER
【プレスリリース】一つの量子的なシャッターにより、二つのスリットを同時に閉じることに成功 | 日本の研究.com
https://research-er.jp/articles/view/51420
https://research-er.jp/img/article/20161019/20161019173048.png
https://research-er.jp/img/article/20161019/20161019173016.png


概要

京都大学大学院工学研究科の岡本亮准教授、竹内繁樹教授らは、光子を用いた量子回路により、量子重ね合わせ状態をとりうる「シャッター」を実現することに成功しました。そして、光子を2重スリットに入射する実験において、特定の条件下では、重ね合わせ状態にある 1 つの量子シャッターで、2つのスリットを同時に遮断できることをはじめて実験的に示しました。これは、量子力学のもつ不思議な性質を、より本質的に浮かび上がらせるとともに、将来の量子コンピュータの実現にも寄与する成果です。

続きはソースで

ダウンロード (3)
 

引用元: 【量子力学】一つの量子的なシャッターにより、二つのスリットを同時に閉じることに成功 [無断転載禁止]©2ch.net

一つの量子的なシャッターにより、二つのスリットを同時に閉じることに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/07/30(土) 00:42:09.20 ID:CAP_USER9
ビッグバンの前にはもうひとつの「古い宇宙」があった:研究結果

宇宙はビッグバンから始まった…という通説は間違っていたのかもしれない。
現在の宇宙は、収縮状態にあった「古い宇宙」が膨張し始めたことで生まれたということを、量子力学を用いて示す研究が発表された。

宇宙は常に膨張状態にあり、それは「ビッグバン」
──無限大の密度をもつ高温の1点からの爆発によって始まった、と一般的に考えられている。

しかし、初期の宇宙に関する研究によって、宇宙はまったく新しいものから始まったのではなく、古い壊れかけの宇宙から形成されたのかもしれないということが示された。

物理学者たちは、このアイデアについて長い間議論してきた。ビッグバン理論では、われわれが理解している
物理法則に反する状態から宇宙が始まったことになるからだ。その代わりに、宇宙には「収縮」と「膨張」の2つの時期があり、それがビッグバンのタイミングで切り替わったのだと考える科学者もいる。

このいわゆる「ビッグバウンス」理論は、1922年に発表されたものである。しかし、宇宙がどのようにして収縮状態から膨張状態に移行したのか(あるいは逆に膨張から収縮に移行するのか)を物理学者たちは説明できずに議論は保留されていた。いままでずっと。

続きはソースで

http://wired.jp/2016/07/29/big-bounce-universe/

ダウンロード (1)


引用元: 【科学】「宇宙はビッグバンから始まった」は間違い 既にひとつの「古い宇宙」があった=量子力学の研究結果★3 ©2ch.net

「宇宙はビッグバンから始まった」は間違い 既にひとつの「古い宇宙」があった=量子力学の研究結果の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/07/27(水) 07:49:50.97 ID:CAP_USER
マイクロ波単一光子の高効率検出を実現 | 理化学研究所
http://www.riken.jp/pr/press/2016/20160725_1/
http://www.riken.jp/~/media/riken/pr/press/2016/20160725_1/fig1.jpg
マイクロ波単一光子の高効率検出を実現 | 60秒でわかるプレスリリース | 理化学研究所
http://www.riken.jp/pr/press/2016/20160725_1/digest/


現在のコンピュータで用いられる情報の最小単位“ビット”は、0と1の二値のみをとるのに対して、量子力学的に振る舞う量子ビットは、0と1の“量子力学的重ね合わせ状態”もとることができます。次世代のコンピュータとしてその実現が期待される「量子コンピュータ」は、量子ビットの持つこの特性を利用することによって、n個の量子ビットで2n個の状態を同時に準備し、超並列計算を可能とします.そのため、量子コンピュータは従来のコンピュータが苦手としてきた超並列計算を必要とする問題に威力を発揮し、現在最速のスーパーコンピュータが解くのに数千年かかる問題に対しても、数十秒で答えを出すことが可能だといわれています。

量子ビットにはいくつかの種類がありますが、中でも超伝導回路によって構成される超伝導量子ビットは、量子コンピュータの最有力な最小構成要素として注目されています。超伝導量子ビットの制御や状態の読み出しには、超伝導量子ビットの励起エネルギーに近いマイクロ波(周波数:数GHz~数十GHz、GHzは10億Hz)が用いられます。そのため、マイクロ波の“量子”である「マイクロ波単一光子」の高効率な検出や生成といった基盤技術は、量子コンピュータの早期実現等には欠くことができません。しかし、マイクロ波光子は、量子暗号通信分野などで用いられる近赤外光子と比較して、エネルギースケールが4~5桁小さいため、その検出は困難でした。

続きはソースで

images (1)

引用元: 【技術】マイクロ波単一光子の高効率検出を実現 マイクロ波光子を用いた量子通信、量子情報処理へ応用 [無断転載禁止]©2ch.net

マイクロ波単一光子の高効率検出を実現 マイクロ波光子を用いた量子通信、量子情報処理へ応用の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/06/22(水) 11:20:05.90 ID:CAP_USER
東京工業大学(東工大)は6月21日、マテリアルズ・インフォマティクスと実験の連携により、希少元素を使わずに赤く光る新窒化物半導体を発見したと発表した。

同成果は、東京工業大学科学技術創成研究院フロンティア材料研究所/元素戦略研究センター 大場史康教授、平松秀典准教授、細野秀雄教授、京都大学大学院工学研究科 日沼洋陽特定助教、田中功教授らの研究グループによるもので、6月21日付けの英国科学誌「Nature Communications」に掲載された。

計算科学、データ科学、合成・評価実験およびこれらを連携した手法により、膨大な数の物質の評価を行い、その結果に基づいて新物質や新機能を開拓することを目指した「マテリアルズ・インフォマティクス」が、米国をはじめ世界各国で盛んになりつつある。今回、同研究グループは、量子力学の基本原理に基づいた第一原理計算によるマテリアルズ・インフォマティクスと高圧合成実験を連携させることで、新たな窒化物半導体を探索した。

窒化物は半導体としての応用に適した電子・光学物性だけでなく、地球上に豊富に存在する窒素の化合物というメリットを持つ。しかし、現在実用化されている窒化物半導体は、緑色や青色、紫外線の発光ダイオードに用いられる窒化ガリウム(GaN)と、窒化インジウム(InN)または窒化アルミニウム(AlN)との固溶体にほぼ限定されている。GaN-InN固溶体では、赤色、黄色の発光デバイスや、太陽電池に必要な波長領域をカバーするのは困難であり、また、既存の赤色や黄色の発光ダイオードには、高コスト、希少、あるいは使い捨てや廃棄が容易でない元素が使用されているという課題があった。

そこで、同研究グループは、伝導キャリアの輸送に有利な電子構造の観点から、亜鉛(Zn)を含む3元系窒化物半導体に着目。既知および仮想的な物質を含む583種類の候補物質のリストを作成した。さらに、この候補物質を対象に、格子振動、3元系状態図における競合相に対する安定性や、バンドギャップ、有効質量などの基礎物性を条件に、計算スクリーニングを実行し、21種類の窒化物半導体を選定した。


第一原理計算を用いた窒化物半導体のスクリーニングの概念図。既知・仮想的な物質の結晶構造、安定性、特性を高精度に予測し、候補を絞った計算スクリーニングにより選定された21種類の窒化物半導体。

続きはソースで

images
※画像はイメージで本文と関係ありません

http://s.news.mynavi.jp/news/2016/06/22/053/index.html
第一原理計算を用いた窒化物半導体のスクリーニングの概念図。既知・仮想的な物質の結晶構造、安定性、特性を高精度に予測し、候補を絞った
http://news.mynavi.jp/photo/news/2016/06/22/053/images/003l.jpg
計算スクリーニングにより選定された21種類の窒化物半導体。(I)既知の半導体。これらが的確に選ばれたことは今回のスクリーニング手法の妥当性が示されたといえる (II)合成の報告はあるものの、半導体としての応用が未開拓な物質 (III)合成の報告すらない新物質
http://news.mynavi.jp/photo/news/2016/06/22/053/images/004l.jpg
合成実験のターゲットとなったCaZn2N2
http://news.mynavi.jp/photo/news/2016/06/22/053/images/005l.jpg

引用元: 【MI】赤く光る新しい窒化物半導体を計算で予測し、高圧合成実験で発見 - 東工大©2ch.net

赤く光る新しい窒化物半導体を計算で予測し、高圧合成実験で発見 - 東工大の続きを読む
スポンサーリンク

このページのトップヘ