理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

量子力学

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/20(火) 14:10:55.91 ID:CAP_USER
英国の理論物理学者スティーブン・ホーキング博士が3月14日、76歳で死去した。
1970年代に、ひとたび飲み込まれたら光でさえ絶対に逃げだせないとされていたブラックホールが「真っ黒」ではなく、光の一部は特異点の周囲の「事象の地平線」から逃げ出せることを明らかにして、
物理学界に衝撃をもたらしたことで知られる。

 これをきっかけに、量子力学のレンズ越しにブラックホールを研究するという、まったく新しい手法が誕生することになった。
しかし、宇宙の性質に関するホーキング氏の驚くべき発言はそれだけではない。
ホーキング博士の40年以上にわたる研究生活において話題になった有名な賭けや、刺激的な発言のいくつかを振り返ろう。

■ブラックホールをめぐる賭け

 ホーキング博士のブラックホール研究はあまりにも有名なので、博士がかつてブラックホールを否定するほうに賭けていたと聞いたら、意外に思われるかもしれない。
しかし、茶目っ気のある博士は、昔から科学的な問題についていくつも有名な賭けをしていて、その多くに負けている。

 1974年12月10日、ホーキング博士はカリフォルニア工科大学の理論物理学者キップ・ソーン氏と、銀河系内の巨大なX線源であるはくちょう座X-1がブラックホールであるかどうかをめぐって賭けをした。
実は二人とも、はくちょう座X-1がブラックホールであることをほぼ確信していたが、ホーキング博士はブラックホールではないほうに賭けることを選んだ。

 博士は1988年の著書「A Brief History of Time」(邦訳「ホーキング、宇宙を語る」1989年)の中で、「私にとって、それは保険のようなものだった。ブラックホールについてたくさんの研究をしてきたので、ブラックホールが存在しないことが明らかになった場合には、すべてが無駄になってしまうからだ」と書いている。
「ブラックホールが存在しないほうに賭けておけば、少なくとも賭けには勝ったという慰めを得ることができるし、雑誌『Private Eye』4年分も手に入る」

 今では、はくちょう座X-1はブラックホールであることが広く受け入れられている。
また、2016年の重力波の発見によって、ブラックホールの存在はいっそう確実なものになっている。

 それからおよそ四半世紀後の1997年、ホーキング博士は、ソーン氏とカリフォルニア工科大学の理論物理学者ジョン・プレスキル氏とともに、ブラックホールをめぐる別の賭けを始めた。賭けの対象になったのは、ブラックホールの中に物質が落ち込むときに、物質に関する情報も失われるかどうかである。ソーン氏とホーキング博士は、ブラックホールに飲み込まれた情報が(量子力学に反して)失われるほうに賭け、プレスキル氏は情報が失われないほうに賭けた。

続きはソースで

関連ソース画像
http://natgeo.nikkeibp.co.jp/atcl/news/18/031600121/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
http://natgeo.nikkeibp.co.jp/atcl/news/18/031600121/
ダウンロード (1)


引用元: 【宇宙物理】追悼:ホーキング博士、意外にも「ブラックホールが存在しない」に賭けていた!ヒッグス粒子が見つからないに100ドル

【宇宙物理】追悼:ホーキング博士、意外にも「ブラックホールが存在しない」に賭けていた!ヒッグス粒子が見つからないに100ドルの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/02/13(火) 23:27:52.80 ID:CAP_USER
Google、IBM、Intel、そして Microsoftといった巨大IT企業たちが量子コンピュータの開発に熱心になっている。
それは量子コンピュータが従来のコンピュータよりも圧倒的な速度で計算を行うことができると期待されているからである。
特に最近では、さまざまな種類の"量子"コンピュータもしくは量子力学から着想を得た専用マシンが登場してきている。
しばしば、スーパーコンピュータの〜〜倍速いという言葉でそれらのマシンの性能が謳われたりすることをよく耳にする。
量子コンピュータは本当にスーパーコンピュータに勝つ事ができるのだろうか?
本稿では、量子コンピュータの速さとは何か、そして量子コンピュータが、現代のシリコン半導体技術の結晶とも言える従来型の古典コンピュータと繰り広げる戦いについて紹介したい。

〈量子コンピュータによる計算の高速化〉

量子コンピュータが計算を高速化すると期待されている理由は、最も基本的な物理法則である量子力学を最大限に利用して計算をするコンピュータだからだ。
量子力学は、半導体、レーザー、MRIなどミクロな世界の現象を利用する身近な技術の基礎にもなっている。
 私たちが普段使っているコンピュータのCPUも半導体で作られているので、その意味では量子力学が使われている。
しかし、その半導体チップ上で行われる計算は、スイッチのオン「0」とオフ「1」のどちらか一方しかとらない"ビット"を用いており、物理法則で許されるものと比べると制限されたものだといえる。
なぜなら、量子力学では「0」か「1」かが確定していない重ね合わせ状態が許されているからだ。
このような量子力学のルールを計算原理に積極的に用いて計算を高速化するマシンが量子コンピュータと呼ばれている。
計算の高速化が示されている問題としては、整理されていないデータから重ね合わせを利用して高速に目的の情報を探索するグローバー探索、古典コンピュータでは効率よく解く事ができない代表的な問題である素因数分解、そして、電子や分子など量子力学を取り込まないと計算できない化学物質・材料シミュレーションをする量子シミュレーションである。

Berry_Iこのように多数の電子の振る舞いを計算することはスーパーコンピュータでは難しく、量子コンピュータの実現により高精度で高速な計算が可能になることが期待されている。 (写真はMacquarie Universityより引用)

関連ソース画像
http://www.qmedia.jp/content/images/2018/01/Berry_I.jpg

続きはソースで

Qmedia
http://www.qmedia.jp/quantum-beat-super-computer/
ダウンロード


引用元: 【テクノロジー】量子コンピュータの挑戦: スーパーコンピュータに勝てるだろうか?[02/09]

量子コンピュータの挑戦: スーパーコンピュータに勝てるだろうか?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/11/28(火) 03:18:56.11 ID:CAP_USER
〈発表のポイント〉

19世紀以来、化学者はアボガドロ数(10の23乗)個の分子の平均像から化学反応の速度を決定してきた。
今回、数十から数百個の分子の反応を調べるだけで速度と反応機構を決定できた。
一次元に並べた数十の分子の反応を逐次的に原子分解能顕微鏡で追跡して
「分子一つ一つはランダムだが総和を取ると一次反応速度式に従う」という量子力学理論の予測を実証した。
顕微鏡を用いて化学反応を記録し解析できることを実証した本成果は、従来の顕微鏡科学の常識を凌駕し、今後、化学、生物学、材料研究における超微量、超高分解能の構造決定の革新的分析手法として新たな研究分野および産業応用を切り拓くことが期待される。

〈発表概要〉

東京大学大学院理学系研究科化学専攻の中村栄一特任教授、原野幸治特任准教授、山内薫教授らの研究グループは、確率論的に起こる一つ一つの分子の反応挙動を顕微鏡で見ることで、その挙動が量子力学の理論の予測に合致することを初めて明らかにした(図1)。


ダブルスリット実験は電子の量子性を表す著名な実験である。
電子一つ一つは粒子としてランダムに挙動する一方で、波としての法則性も示す。
分子同士の反応も同様に挙動するものと予測されてきたが実験的証明はなかった。本研究では、化学反応がランダムに起きる一方で、統計的には一定の法則に従う、という量子力学的遷移状態理論の予測を実証した。

化学反応研究は19世紀以来、反応容器の中に入れたアボガドロ数(10の23乗)
個の分子の総量の増減(バルク実験)を追跡することで行われてきた。
今回、一次元に配列させた[60]フラーレン(注1)分子の反応を、分子一つ一つについて、温度を変えながら原子分解能電子顕微鏡(注2)で直接観察して、数十個の分子について積算した。

本成果を応用することにより、多数の分子の平均に頼る従前の研究手法では平均に埋もれてしまった微細な分子の動きに関する情報が獲得できるようになり、新しい化学反応の発見や、宇宙空間や地球内部など高エネルギー環境における反応モデルの提唱、さらには原油の接触改質などの工業スケール反応における高効率触媒の開発や合理的な化学反応プロセスの設計につながると期待される。


図1. 本研究の概要図
https://apps.adm.s.u-tokyo.ac.jp/WEB_info/p/pub/2762/image001_nakamura.jpg

続きはソースで

東京大学
https://www.s.u-tokyo.ac.jp/ja/press/2017/5616/
ダウンロード


引用元: 【東京大学】量子力学が予言した化学反応理論を初めて実験で証明

【東京大学】量子力学が予言した化学反応理論を初めて実験で証明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/11/11(土) 02:40:25.85 ID:CAP_USER
インド、オマーン、カナダ、エジプトなどの物理学者の国際研究チームは、相対性理論と量子力学を統合する量子重力理論を実験的に検証するための新しい手法を提案している。
既存の光学技術を用いた実験観測によって、ループ量子重力理論や超ひも理論などの妥当性を検証できるようにするという。
研究論文は、「Nuclear Physics B」に掲載された。


画像:非可換的な時空構造による効果を検出するために提案されている実験セットアップ
http://news.mynavi.jp/news/2017/11/09/076/images/001.jpg


マクロな重力についての理論である一般相対性理論と、原子以下といったミクロな世界を記述する量子力学は、互いに矛盾する点があり、理論の誕生から100年ほど経った今日もいまだに統一されない状況が続いている。このため両者の統合を目指した量子重力理論の研究が続けられており、ループ量子重力理論や超ひも理論などが統一理論の有力候補とみなされている。

ループ量子重力理論は、物質にそれ以上分割できない最小単位としての素粒子があるのと同じように、
時間や空間にもそれ以上分割できない離散的な最小単位があると考えるのが特徴である。
また、超ひも理論は、物質の構成単位である素粒子が大きさのない点ではなく「振動するひも」であるとする理論だが、この場合も時空構造における長さの最小単位は「ひも」の長さということになる。

ループ量子重力理論や超ひも理論で扱う時空の最小単位は、プランクスケール程度、すなわちプランク長(10-35m程度)やプランク時間(10-44秒程度)といった極めて微小な値をとる。

続きはソースで

マイナビニュース
http://news.mynavi.jp/news/2017/11/09/076/
ダウンロード


引用元: 【物理学】既存の光学技術で量子重力理論を検証する方法を提案

既存の光学技術で量子重力理論を検証する方法を提案の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/10/13(金) 22:39:22.88 ID:CAP_USER
今年も異能と天才たちにまばゆい光が当たった。スウェーデン発、ノーベル賞だ。国別受賞数では米国が断トツの345と2位イギリスのざっと3倍。7位のわが国も大したものなのだが、巷では基礎研究の足腰に陰りが見えるともっぱらの噂だ。ところが、灯台もと暗し。探せばいる、いた。21世紀のニッポンを支える天才、異能の面々が。その一人を紹介する。

物理学の中でもっとも難解な分野の一つとされる量子力学。興味を持ったのは9歳の時だった。

「スティーブン・ホーキング博士など物理学者が書いた本に出合ったのがきっかけです」

都内の私立高校1年の近藤龍一君(16)。12歳の時に、『12歳の少年が書いた量子力学の教科書』(ベレ出版)を書き上げた。専門家でも難解な量子力学の本を12歳で書いたのは最年少という。

無類の本好きだ。幼少期からあらゆる学問分野を読みあさり、例えば世界史のような遠い世界に興味があった。中でも、不可解で現実の常識がまったく通じない量子の分野は、究極の遠い世界だった。

この不可解なものを理解したい──。10歳で量子力学の独学を始めた。その過程で、入門書と専門書の間に位置する量子力学の本がほとんどないと実感。中学受験の翌日から執筆に取りかかり、夜から朝にかけて4~5時間、220日をかけて一気に原稿用紙400枚以上にまとめた。心掛けたのは、入門書と専門書の「懸け橋」になる本、だ。

続きはソースで

(編集部・野村昌二)

http://cdn.images-dot.com/S2000/upload/2017101100074_1.jpg
https://dot.asahi.com/aera/2017101100074.html
ダウンロード


引用元: 12歳で「量子力学の教科書」執筆 日本の未来を支える若き天才 

12歳で「量子力学の教科書」執筆 日本の未来を支える若き天才の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/09/06(水) 23:33:13.15 ID:CAP_USER
2017.09.06
量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~:物理工学専攻 伊與田英輝助教、金子和哉さん(D1)、沙川貴大准教授

東京大学大学院工学系研究科物理工学専攻の伊與田英輝助教、金子和哉大学院生、沙川貴大准教授は、マクロ(巨視的)な世界の基本法則で、不可逆な変化に関する熱力学第二法則を、ミクロな世界の基本法則である量子力学から、理論的に導出することに成功しました。
これは、極微の世界を支配する「量子力学」と、私達の日常を支配する「熱力学」という、二つの大きく隔たった体系を直接に結び付けるものです。
本研究では、量子多体系の理論に基づき、単一の波動関数(注4)で表される量子力学系において、熱力学第二法則を理論的に導きました。 

続きはソースで

プレスリリース本文:/shared/press/data/setnws_201709061614152431248138_195100.pdf
Physical Review Letters:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.100601#fulltext

▽引用元:東京大学大学院工学系研究科 プレスリリース 2017.09.06
http://www.t.u-tokyo.ac.jp/soe/press/setnws_201709061614152431248138.html
http://www.t.u-tokyo.ac.jp/shared/press/images/setnws_201709061614152431248138_761028.jpg

ダウンロード (4)


引用元: 【物理】量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~/東京大©2ch.net

量子力学から熱力学第二法則を導出することに成功 ~「時間の矢」の起源の解明へ大きな一歩~/東京大の続きを読む

このページのトップヘ