理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

電子顕微鏡

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/03/09(月) 21:58:35.35 ID:???.net
掲載日:2015年3月3日
http://gigazine.net/news/20150303-light-particle-wave/

ダウンロード

 光は「粒子」の性質と「波」の性質を併せ持っていますが、これまでは同時に観測できなかったこの両方の性質を、スイス連邦工科大学ローザンヌ校(EPFL)の研究チームが世界で初めて電子顕微鏡で撮影することに成功しました。

そのすごい写真がコレ。

画像
© 2015 EPFL
http://actu.epfl.ch/public/upload/news/images/4d/23/ba4c91c2.jpg

 といっても、何がどうすごいのかがとてもわかりづらいわけですが、なぜこれを撮影するのがそんなにすごいことなのか、どのようにして撮影したのかをEPFLがアニメーションムービーで解説していて、これを見れば事情がわりと簡単に把握できます。

Two-in-one photography: Light as wave and particle! - YouTube
https://www.youtube.com/watch?v=mlaVHxUSiNk&hd=1




 アインシュタインといえば「特殊相対性理論」「一般相対性理論」などで知られる20世紀の物理学者です。19世紀末まで「光は波である」という考え方が主流でしたが、それでは「光電効果」などの説明がつかなかったところに、アインシュタインは「光をエネルギーの粒子(光量子)だと考えればいい」と、17世紀に唱えられていた粒子説を復活させました。

画像
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00269.jpg

画像
この「光量子仮説」による「光電効果の法則の発見等」でアインシュタインはノーベル物理学賞を受賞しました。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00270.jpg

その後、時代が下って、光は「波」と……
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00276.jpg

画像
「粒子」の、両方の性質を持ち合わせていると考えられるようになりました。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00277.jpg

画像
しかし、問題は光が波と粒子、両方の性質を現しているところを誰も観測したことがない、ということ。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00281.jpg

画像
そこでEPFLの研究者が考えた方法がコレです。まず直径0.00008mmという非常に細い金属製のナノワイヤーを用意し、そこにレーザーを照射します。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00297.jpg

画像
ナノワイヤー中の光子はレーザーからエネルギーを与えられ振動し、ワイヤーを行ったり来たりします。
光子が正反対の方向に運動することで生まれた新たな波が、実験で用いられる光定在波となります。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00305.jpg

画像
普段、写真を撮影するときはカメラのセンサーが光を集めることで像を結んでいます。
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00317.jpg

画像
では、光自体の撮影を行いたいというときはどうすればいいのか……?
http://i.gzn.jp/img/2015/03/03/light-particle-wave/snap00323.jpg
続きはソースで

<参照> 
The first ever photograph of light as both a particle and wave 
http://actu.epfl.ch/news/the-first-ever-photograph-of-light-as-both-a-parti/ 

Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field : Nature Communications : Nature Publishing Group 
http://www.nature.com/ncomms/2015/150302/ncomms7407/full/ncomms7407.html 

The first ever photograph of light as a particle and a wave | EurekAlert! Science News 
http://www.eurekalert.org/pub_releases/2015-03/epfd-tfe030115.php

引用元: 【光学】世界で初めて「光」の粒子と波の性質を同時に撮影することに成功

【すごい!】世界で初めて「光」の粒子と波の性質を同時に撮影することに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/02/19(木) 17:56:25.22 ID:???.net
日立、世界最高級分解能43pmの原子分解能・ホログラフィー電子顕微鏡を開発
マイナビニュース 日野雄太  [2015/02/19]

画像
「原子分解能・ホログラフィー電子顕微鏡装置」の概観
http://news.mynavi.jp/news/2015/02/19/369/images/001l.jpg
GaN結晶の観察例
http://news.mynavi.jp/news/2015/02/19/369/images/002l.jpg

 日立製作所は2月18日、最先端研究開発支援プログラム「原子分解能・ホログラフィー電子顕微鏡の開発とその応用」において、1.2MVの加速電圧を備えた「原子分解能・ホログラフィー電子顕微鏡」を開発し、世界最高の分解能(点分解能)となる43pm(ピコメートル)を達成したと発表した。

詳細は、米国科学誌「Applied Physics Letters」のオンライン版に掲載された。

 同社は、2010年3月から国家プロジェクト「最先端研究開発支援プログラム」の助成を受け、原子レベルでの電磁場観察を可能とする「原子分解能・ホログラフィー電子顕微鏡」の開発を行ってきた。同装置では分解能を最大限に向上させるために、加速電圧を1.2MVとすることで、電子線の波長を短くし、さらに球面収差補正器の搭載をはじめとする数々の技術開発を行ったという。

 具体的には、光学顕微鏡では凸レンズと凹レンズを組み合わせて球面収差を補正し、焦点ぼけをなくした上で、試料構造の拡大像を観察するが、電子レンズを用いる電子顕微鏡では、これまで凹レンズの機能を出すことができなかったため、長い間、球面収差により分解能の向上が阻まれてきた。近年、この球面収差を補正する装置の開発が進められてきたが、球面収差補正器の性能を引き出すには、搭載される電子顕微鏡本体に高い安定性が求められるため、大型の超高圧電子顕微鏡には搭載できなかった。今回、1.2MVのエネルギーのばらつきを抑えた電子ビームや高安定電界放出電子銃などの実現により、電子顕微鏡装置全般において安定性を大幅に高め、超高圧電子顕微鏡に球面収差補正器の搭載を可能にした。

続く

http://news.mynavi.jp/news/2015/02/19/369/

引用元: 【観測】日立、世界最高級分解能43pmの原子分解能・ホログラフィー電子顕微鏡を開発

日立、世界最高級分解能43pmの原子分解能・ホログラフィー電子顕微鏡を開発の続きを読む
スポンサーリンク

このページのトップヘ