理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

電流

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/28(金) 02:45:48.37 ID:CAP_USER
これからのロボットは「液体」! プログラムで動く液体金属のヒミツ 「T-1000」実現の日も近い
https://gendai.ismedia.jp/articles/-/64772
https://gendai.ismedia.jp/articles/-/64772?page=2
2019/6/26
ブルーバックス,現代

※動画あり(2件)

画像:
https://gendai.ismedia.jp/mwimgs/8/d/640m/img_8d3340b4ba04b2a57b835723721c088082779.jpg

 液体金属を意のままに操る。映画やアニメではおなじみのこの能力が、現実のものとなる日も近いかもしれない──。

 イギリスのサセ◯クス大学とスウォンジー大学では「プログラミングできる液体金属の研究」がなされています。
 1991年の映画『ターミネーター2』に登場して強烈なインパクトを残し、今でも液体金属の代名詞として使われ続けているターミネーター「T-1000」。
 その第一歩となる研究をご紹介します。

 ・自由に形を変える、「新しい」材料
 今回発表されたのは、液体金属に電荷をかけて操作することで文字やハートなどに形を変える方法です。
 その結果、液体金属は「自在に形を変える回路」としても使えるようになるというのです。

 液体金属の位置と形状はプログラミング可能で、動的に制御できます。
 電極の電流が流れる向き(アノード/カソード)をプログラムで切り替え、
 表面張力を変えることにより液体金属を流れやすくしつつ、電極に引き寄せて移動させています。

 液体金属の組成はシンプルなものです。
 融点が30℃を下回るガリウムを主な原料とし、液体の形態を維持できる範囲でインジウムやスズなどを混ぜたものだ、とのこと。

 これを水酸化ナトリウム溶液または塩水に浸し、アルミニウム片と接触させることで、「燃料」を与えたことになります。これで約1時間移動できます。
 直線的に移動したり、円形の皿の外側を走り回ったり、複雑な形をくぐり抜けたり。まるで知性があるかのような動きをしています。
 SF映画に出てくる、宇宙空間を進み自らを変形させるロボットを想像させます。

続きはソースで

images (1)

引用元: 【材料/AI】これからのロボットは「液体」! プログラムで動く液体金属のヒミツ 「T-1000」実現の日も近い[06/26]

これからのロボットは「液体」! プログラムで動く液体金属のヒミツ 「T-1000」実現の日も近いの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/03/19(火) 14:20:23.64 ID:CAP_USER
地磁気とは地球内部のコアによって発生している磁場のことであり、南極側がN極、北極側がS極となっています。いくつかの動物は地磁気を感知して利用することが知られていましたが、これまでのところ人間が磁場を感知できるのかどうかは明らかになっていませんでした。カリフォルニア工科大学の生物学・生物工学部教授である下條信輔氏らの研究チームは、人間の脳波を観察しながら磁場を変化させる実験を行い、「人間が磁場を感じ取ることができる」という証拠を発見したと発表しました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/03_m.jpg

Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain | eNeuro
http://www.eneuro.org/content/early/2019/03/18/ENEURO.0483-18.2019

New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field
https://theconversation.com/new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-field-113536

Scientists Find Evidence That Your Brain Can Sense Earth's Magnetic Field
https://www.livescience.com/65018-human-brain-senses-magnetic-field.html
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/img-snap09477_m.png

コンパスのN極が北を向くのは地磁気の働きによるものですが、地磁気は地球の表面においてはかなり弱く、せいぜい冷蔵庫に貼り付くマグネットの100分の1程度の磁力しかありません。しかし、地球には磁場を感じ取り、ナビゲーションに役立てている動物も存在します。たとえば渡り鳥やウミガメといった動物は、地球の磁場を利用して方角や場所を判断しています。

その一方で、人間が磁場を感知できるのかどうかという疑問には、長年にわたって答えが出ていませんでした。人間が磁場を感知できるという説に好意的な研究結果もあれば否定的な結果もあり、何十年にもわたって意見の一致を見なかったとのこと。

長らく人間の磁場感知能力について確かな意見が出なかったのは、過去の研究の多くが「日常的な人間の感覚」に頼っていたからだと研究チームは考えています。ほぼ全ての人間は日常生活において磁場を意識することはなく、たとえ磁場が日常生活に影響を及ぼしていたとしても、それは無意識的か非常にかすかなものにとどまります。そこで、生物学者や認知神経学者などを含んだ下條氏らの研究チームは別のアプローチを取り、神経科学的な証拠を発見しようと試みました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/01_m.png

研究チームは成人した34人の被験者に導体で囲まれた特殊なファラデーケージに座って目を閉じてもらい、被験者の脳波を観察しました。ファラデーケージはワイヤーに電流を通すことで制御された磁場を発生させることが可能な造りとなっており、研究チームはケージ内の磁場を自由に操ることができたとのこと。ファラデーケージに特殊な磁場を発生させていない状態では、実験が行われた場所である北緯60度の位置に等しい磁場がケージ内にかかっていたそうです。

通常、人々の日常生活で頭をくるりと回したり、前後の向きを入れ替えたりすると、脳に対して磁場の方向が相対的に変化します。

続きはソースで
ダウンロード (2)


引用元: 【地磁気】「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見[03/19]

「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/07(木) 20:16:53.83 ID:CAP_USER
宇宙航空研究開発機構(JAXA)などは7日、火星の希薄な大気でも飛行できる「火星ドローン」の実現に欠かせない、軽量で高効率のモーターの開発に成功したと発表した。

 現状で一般的なモーターに供給される電力の約半分は熱として失われており、高効率化は宇宙用だけでなく、地上用でも重要な課題だ。

 JAXAと新明和工業(兵庫県宝塚市)、大分大、日本文理大(大分市)、茨城大、静岡大などの研究チームは・・・

続きはソースで

https://contents.trafficnews.jp/image/000/025/961/large_20190207at80S_p.jpg
https://trafficnews.jp/post/83335
ダウンロード


引用元: 【機械工学】小型、高効率モーター開発=「火星ドローン」実現に一歩-JAXAなど[02/07]

小型、高効率モーター開発=「火星ドローン」実現に一歩-JAXAなどの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/11(月) 18:57:35.68 ID:CAP_USER
オーロラが急に明るくなって激しく活動する「オーロラ爆発」では、光の帯のかなり下側まで大量の電子が流れ込んでいることが、国立極地研究所の観測で分かった。宇宙から高度65キロ付近まで入ってきていると推定されるという。

 宇宙へ 終わらない旅
 昭和基地で2017年6月30日夜、オーロラが激しく活発する現象が5分ほど観測された。この時、オーロラが光っている高度約100キロよりかなり下の65キロ付近まで大量の電子が流れている様子がレーダーに映った。電流の量は1平方メートル当たり0・3ミリワットで、南極の上空全体では30万キロワットほどになるという。

続きはソースで

 論文は下記(https://earth-planets-space.springeropen.com/articles/10.1186/s40623-019-0989-7)で読める。

https://www.asahicom.jp/articles/images/AS20190208005537_commL.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASM286X9FM28UEHF016.html
ダウンロード


引用元: オーロラ爆発の下、大量の電子 専門家「通り道がある」[02/11]

オーロラ爆発の下、大量の電子 専門家「通り道がある」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/01/29(火) 18:08:26.09 ID:CAP_USER
電波を直流電流に変換する装置は「レクテナ」と呼ばれ、ワイヤレス給電などで活用されています。MITが新たに開発したのは、Wi-Fiの周波数である2.4GHz、および5GHz帯に適した素材を使ったレクテナで、一般的なWi-Fiの強度である150マイクロワットの場合、40マイクロワットの電力を生み出せるとのこと。

Two-dimensional MoS 2 -enabled flexible rectenna for Wi-Fi-band wireless energy harvesting | Nature
https://www.nature.com/articles/s41586-019-0892-1

Converting Wi-Fi signals to electricity with new 2-D materials | MIT News
http://news.mit.edu/2019/converting-wi-fi-signals-electricity-0128
https://i.gzn.jp/img/2019/01/29/wifi-rectenna/01.png

レクテナは「整流器つきのアンテナ」で、アンテナで受信した電波を整流回路を通して直流電流に変換しています。電波エネルギーを発電に用いるという発想は特別に新しいものではなく、過去にいくつものレクテナが開発されています。

従来のレクテナでは、整流器にはシリコンやヒ化ガリウムが使われてきました。こうした素材でもWi-Fiの2.4GHz帯や5GHz帯はカバー可能ですが柔軟性に欠け、小さな端末を作るのには向いていても・・・

続きはソースで

https://gigazine.net/news/20190129-wifi-rectenna/
ダウンロード


引用元: 【電波を電気に変換】受信したWi-Fiを電力に変換するため新素材を使った「レクテナ」をMITが開発[01/29]

【電波を電気に変換】受信したWi-Fiを電力に変換するため新素材を使った「レクテナ」をMITが開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/12/25(火) 17:40:01.38 ID:CAP_USER
静岡大学の小野行徳教授らのグループは、日本電信電話株式会社、北海道大学の研究グループと共同で、電力供給なしにトランジスタの電流を増幅させることに成功した。新たな低消費電力デバイスの開発が期待される。

 コンピュータの高性能化は、構成部品であるトランジスタの電流を、いかに少ない電力で増大させるかが鍵だ。従来の増幅法では電力供給が不可欠で、供給電力が発熱の原因となることが性能向上の阻害要因だった。

 通常、物質中の電子は、電位の高い場所から低い場所へと移動し、等電位の端子間に電子は流れず電流は生じない。しかし、電子同士の衝突頻度が非常に高い特別な場合には、電子は流体のように振る舞い、近くに強い流れがあると、その流れに沿った新たな流れが生じる。この振る舞いは電子流体と呼ばれ、これまでは、ヒ化ガリウム(GaAs)などの一部の物質で、マイクロメートル以上の大きなスケールでしか観測されなかった。

続きはソースで

論文情報:【Nature Communications】Electron aspirator using electron-electron scattering in nanoscale silicon
https://www.nature.com/articles/s41467-018-07278-8

https://univ-journal.jp/24158/
ダウンロード


引用元: 【トランジスタ】電力供給なしにトランジスタの電流を増幅、静岡大学などが成功[12/25]

【トランジスタ】電力供給なしにトランジスタの電流を増幅、静岡大学などが成功の続きを読む

このページのトップヘ