理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

電流

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/06(金) 12:38:26.05 ID:???.net
「さっとひと吹き」で有機EL照明に - 東北大、新材料を開発 | マイナビニュース
http://news.mynavi.jp/news/2015/11/05/534/
共同発表:近未来の照明のかたち:「さっと一吹き、できあがり」
http://www.jst.go.jp/pr/announce/20151105/index.html

画像
http://www.jst.go.jp/pr/announce/20151105/icons/zu1.gif
図1 従来の多層構造からなるOLEDと本研究での単一層からなるOLEDの模式図
多層構造OLEDでは、様々な機能に特化した複数の材料を層状に重ねることで高効率化を達成していた。本研究では、炭素と水素という二種の元素のみからなる新大環状分子(5Me-[5]CMP)を用いることで単一層・高発光効率OLEDが実現された。緑色の斜線部にはわずか6%の微量リン光発光材が混ぜ込まれている。

http://www.jst.go.jp/pr/announce/20151105/icons/zu2.jpg
図2 有機化学が可能とする物質変換
樹木から単離された天然物(トルエン)を分子設計・化学変換により五つ連ねた環状分子(5Me-[5]CMP)とすることで、高機能な電子材料が誕生する。この電子材料分子に用いられている元素は炭素(灰色)と水素(白色)のみである。


東北大学は11月5日、短い工程でほぼ理論限界となる発光効率を実現する有機ELが出来上がる分子材料を開発したと発表した。

同成果は同大学の磯部寛之 教授(JST ERATO 磯部縮退π集積プロジェクト研究総括)の研究グループによるもので、11月4日に英国王立化学会誌「Chemical Science」に掲載された。

有機ELを材料とする発光デバイスでは、デバイスに電場を印加して電流を流し、負の電荷を帯びた電子と正の電荷を帯びた正孔をデバイスの材料中で出合わせ、出合った際に生じるエネルギーを光として取り出している。これまで、リン光発光材料を活用することで、量子効率100%という理論限界値が達成されているが、理論限界値の実現するためには「有機ELデバイスを多層構造にする」ことが最良と考えられていた。

続きはソースで

ダウンロード (1)


引用元: 【材料科学】単一層ながら、ほぼ理論限界となる高い効率で光を発する有機ELを実現 東北大など

単一層ながら、ほぼ理論限界となる高い効率で光を発する有機ELを実現 東北大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/10/13(火) 17:53:37.76 ID:???.net
パルス電流によるスキルミオンの生成・消去に成功 | 理化学研究所
http://www.riken.jp/pr/press/2015/20151013_1/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig1.jpg
図1 スキルミオンの模式図
各矢印は磁気スキルミオン内の磁気モーメントの向きを示している。外側の磁気モーメントは外部磁場と同じ向きを向くが、中心の磁気モーメントは反対を向く。外部磁場に対して、赤矢印が0°、黄色矢印が90°、青矢印が180°傾いている。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig2.jpg
図2 マンガンシリコン(MnSi)の磁気相図
(a)急冷前の磁気相図と(b)急冷後の磁気相図。磁気スキルミオン安定相を通過して急冷された場合にのみ、磁気スキルミオンが準安定相として(b)図中赤領域において観測される。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig3.jpg
図3 磁気スキルミオンの急冷の概念図
安定相である磁気スキルミオンを徐々に冷却すると、別の安定相(コニカル相)へと変化するが、急冷した場合はこの変化を起こすことなく、磁気スキルミオン準安定相として低温まで保持される。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig4.jpg
図4 パルス電流を用いた磁気スキルミオンの生成と消去
(a) ホール抵抗率の変化と用いたパルス電流の時系列。ホール抵抗率の高い状態が磁気スキルミオン準安定相、低い状態がコニカル安定相に対応する。(b)パルス電流を用いた磁気スキルミオンの生成・消去の繰り返し操作。


要旨

理化学研究所(理研)創発物性科学研究センター動的創発物性研究ユニットの大池広志特別研究員、賀川史敬ユニットリーダーらの研究グループ※は、パルス電流印加(短時間に瞬間的に電流を流すこと)による磁気スキルミオンの生成・消去に成功しました。

磁気スキルミオン[1]は数十ナノメートル(nm、1 nmは10億分の1メートル)程度の大きさの渦状の磁気構造で、次世代の高密度磁気メモリ素子への応用が期待されています。しかし、磁性体を数十nmの厚さの薄膜に加工しない限り、磁気スキルミオンを観測できる温度域が数ケルビン(K)幅(マンガンシリコン(MnSi)の場合、27K~29K)程度と非常に限られていました。磁性体がその温度域を外れると磁気スキルミオンは別の磁気構造へと変化し失われてしまうため、基礎・応用研究の一層の展開に向けて磁気スキルミオンを観測できる温度域の拡大は解決すべき課題となっていました。

研究グループは、パルス電流印加に伴う急加熱と急冷効果を利用することで、MnSiにおいて、これまで磁気スキルミオンが観測されないと考えられていた温度域(27Kより低温)で、磁気スキルミオンを生成できることを発見しました。さらに、磁気スキルミオン生成に用いたパルス電流とは異なる強度・幅のパルス電流を用いることで、生成された磁気スキルミオンを消去できることも実証しました。
このようなパルス電流を用いた磁気スキルミオンの生成・消去は繰り返すことができることも確認しました。これらの成果は、電流印加による磁気スキルミオンの不揮発制御[2]の新原理を実証したものと言え、今後、磁気スキルミオンメモリデバイスの実現へ向けて1つの指針を与えると期待できます。

本研究は、国際科学雑誌『Nature Physics』に掲載されるのに先立ち、オンライン版(10月12日付け:日本時間10月13日)に掲載されました。

続きはソースで

images (1)
 

引用元: 【電磁気学】パルス電流によるスキルミオンの生成・消去に成功 ナノスケールの磁気構造を書き換える新原理を実証 理研

パルス電流によるスキルミオンの生成・消去に成功 ナノスケールの磁気構造を書き換える新原理を実証 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/10/02(金) 01:15:48.83 ID:???*.net
電波を「収穫」し電力に変換、英で新技術公開
http://www.afpbb.com/articles/-/3061871?ctm_campaign=hover_menu


【10月1日 AFP】周囲に飛び交う電波を、低電力機器の充電に使用可能な電力に変換できるとされる「エネルギー収穫技術」が9月30日、英ロンドン(London)で公開された。

 この「フリーボルト(Freevolt)」技術は、英国のポール・ドレイソン(Paul Drayson)元科学技術相によって、英国王立科学研究所(Royal Institution)の階段教室で発表された。
ここは、英科学者で電磁気学の祖、マイケル・ファラデー(Michael Faraday)が19世紀に講義を行っていた場所だ。

 ドレイソン氏は、会場の出席者らが使用している携帯電話からの信号によって生成したエネルギーでスピーカーを作動させる実験を披露した。

 フリーボルト技術では、交流電流を直流に変換する整流器と多帯域アンテナを備えている。
共同開発した英企業ドレイソン・テクノロジーズ(Drayson Technologies)と英インペリアル・カレッジ・ロンドン(Imperial College London)は声明で、同技術は「多様な電波周波数帯域からエネルギーを吸収できる」と述べている。

 ドレイソン氏は「企業は長年にわたり、WiFi機器、携帯電話、放送網などからエネルギーを取り込む方法の研究を続けている」「だが、収穫されるエネルギーがごく少量しかないので、一筋縄ではいかない」と語った。

続きはソースで

images

(c)AFP

引用元: 【技術】電波を「収穫」し電力に変換

電波を「収穫」し電力に変換の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/09/30(水) 18:03:39.88 ID:???.net
共同発表:鉄系高温超伝導の磁石化に成功~強力磁石開発へ新しい可能性~
http://www.jst.go.jp/pr/announce/20150930/index.html

画像
http://www.jst.go.jp/pr/announce/20150930/icons/zu1.jpg
図1 強力磁石の磁場発生のメカニズム
強磁性永久磁石では向きの揃ったスピンが、コイル電磁石では電流ループが磁場の起源で、それぞれ磁化、外部電源からの電流供給により磁石となる。一方、超伝導バルク磁石では電磁石と同様に超伝導電流ループが磁場の起源であるが、永久磁石と同様に一度磁化すると、遠隔的に誘導された超伝導電流ループが抵抗ゼロのため減衰せず、冷却下では永久磁石と同じように使用することができる。超伝導体の電流エネルギー密度は銅より100倍以上高いため、小型でも非常に強力な磁石になる。今回、数十ナノメートルの微細な鉄系高温超伝導体の結晶をバルク(塊)にすることで、1テスラを超える磁力を持つ強力磁石にすることに成功した。

http://www.jst.go.jp/pr/announce/20150930/icons/zu2.jpg
図2 試作した鉄系高温超伝導バルク磁石
中央の黒い部分(直径1cm)が鉄系高温超伝導体。周囲は複合金属リング。


ポイント
希少元素を使用しない、新しい高性能磁石開発が求められていた。
多結晶バルク(塊)を用いて、市販のネオジム磁石の2倍の磁力を持つ鉄系高温超伝導体の磁石化に初めて成功した。
10テスラ級の小型磁石が数年以内に実現することが期待できる。


JST 戦略的創造研究推進事業において、東京農工大学の山本 明保 特任准教授らは、鉄系高温超伝導を応用した強力磁石の開発に初めて成功しました。

医療・エネルギー分野の先端機器に使用される強力な超伝導磁石は、極低温で動作可能となることから、冷却のために稀少で高価な液体ヘリウムが用いられています。また、ネオジム磁石をはじめとする強磁性磁石ではレアアース元素が必須でした。そのため液体ヘリウムを 使わず、より高い温度で使える高温超伝導体の研究開発が進められてきましたが、これまで鉄系高温超伝導体を磁石にする技術は確立されていませんでした。

続きはソースで

images (1)

本研究成果は、2015年9月30日(英国時間)に英国物理学会発行の科学誌「Superconductor Science and Technology」のオンライン速報版で公開されます。

引用元: 【技術】鉄系高温超伝導の磁石化に成功 ネオジム磁石の2倍の磁力 東京農工大学

鉄系高温超伝導の磁石化に成功 ネオジム磁石の2倍の磁力 東京農工大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/05/27(水) 07:37:07.70 ID:???.net
塗って作れる太陽電池で変換効率10%を達成 | 理化学研究所
http://www.riken.jp/pr/press/2015/20150526_1/
塗って作れる太陽電池で変換効率10%を達成 | 60秒でわかるプレスリリース | 理化学研究所
http://www.riken.jp/pr/press/2015/20150526_1/digest/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20150526_1/fig1.jpg
図1 PNTz4Tを発電層として用いたOPV素子の電流・電圧特性
順構造素子の発電層を厚くし、さらに逆構造素子を用いることで、電流密度が増大し、変換効率が向上した。エネルギー変換効率は、電流−電圧特性から短絡電流密度(電圧0 Vでの電流密度)と開放電圧(電流密度0 mA/cm2での電圧)、曲線因子(最適動作点での出力(最大出力))を読み取り、これらを掛け合わせることで求められる。

http://www.riken.jp/~/media/riken/pr/press/2015/20150526_1/fig2.jpg
図2 PNTz4Tを発電層として用いたOPV素子の模式図
順構造、逆構造どちらの素子においても、上部電極付近にフェイスオン配向のポリマー分子、下部電極付近にエッジオン配向のポリマー分子の割合が多い。逆構造素子では、ホールが上部電極(陽極)に向かって流れるため、よりホールを流しやすくなり、効率が向上する。


環境負荷が少ないエネルギーが話題になっています。太陽電池による発電もその1つで、なかでも有機薄膜太陽電池(OPV)は次世代太陽電池の有力な候補に浮上しています。現在、主に使われている太陽電池はガラス基板にシリコン半導体の発電層を貼ったもので、硬くて重い、設置場所が限られるなどの欠点がありました。これに対して、OPVはプラスチックや薄い金属に半導体ポリマーを塗布してつくるため、しなやかで軽く、3D曲面にすることも可能なほか、製作コストが安い、サイズを選ばないという特徴があります。ただ、エネルギー変換効率(太陽光エネルギーを電力に変換する効率)が、シリコン太陽電池の半分程度と低いため、これを向上させることが実用化に向けての最大の課題であり、変換効率10%が当面の目標値になっていました。

理研の研究者を中心とした共同研究チームはOPVで変換効率10%を達成すべく、半導体ポリマーを含む発電層や素子構造の改善に取り組みました。まず、正の電荷(正孔=ホール)を輸送する半導体ポリマーと、負の電荷(電子)を輸送するフラーレン誘導体を混合してつくる発電層を厚くしました。

続きはソースで

01


引用元: 【エネルギー技術/有機化学】塗って作れる有機薄膜太陽電池 発電層を厚くし、「逆構造素子」を適用 変換効率10%を達成

塗って作れる有機薄膜太陽電池 発電層を厚くし、「逆構造素子」を適用 変換効率10%を達成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/03/21(土) 01:58:23.11 ID:???.net
掲載日:2015年3月20日
http://news.mynavi.jp/news/2015/03/20/212/

 三菱電機は3月19日、100Gbps高速光通信用「25Gbps光通信用DFBレーザ―」を開発したと発表した。

01


 同社は今回、高速応答性を損なうことなく、発光層に効率良く電流注入できる低容量電流狭窄層を開発。
従来製品に比べて発光層への電力注入効率を約12%改善し、高温時(+85℃)でも10mW以上の高い光出力を実現した。
高温動作が可能となったためデバイスの冷却が不要となり、光通信機器の低消費電力化につなげることができる。
また、合波時に生じる光損失を補うことができる高光出力を実現したことで、異なる4波長の25Gbps DFBレーザー光を合波する100Gbps光通信用集積型TOSAの高性能化に寄与する。

 この低用量電流狭窄層の開発とDFBレーザー部分を従来比75%縮小したことで、広い動作温度範囲(-20℃~+85℃)で業界トップレベルの高品質な変調波形(マスクマージン20%以上)を実現した。

続きはソースで

<画像>
25Gbps 光通信用DFBレーザーの概略図
http://news.mynavi.jp/news/2015/03/20/212/images/001l.jpg

<参照>
三菱電機 ニュースリリース 100Gbps高速光通信用「25Gbps光通信用DFBレーザー」を開発
http://www.mitsubishielectric.co.jp/news/2015/0319.html?cid=rss

引用元: 【技術/通信】三菱電機、100Gbps高速光通信用「25Gbps光通信用DFBレーザ―」を開発

三菱電機、100Gbps高速光通信用「25Gbps光通信用DFBレーザ―」を開発の続きを読む

このページのトップヘ