理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

高分子

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/04/09(月) 18:08:07.98 ID:CAP_USER
マサチューセッツ工科大学(MIT)の研究チームは、熱伝導性の高いプラスチックを開発したと発表した。
通常の高分子材料と比べて熱伝導性が10倍以上高いという。ノートPCやスマートフォンの筐体などにも応用できる可能性がある。
研究論文は、米国科学誌「Science Advances」に掲載された。

高分子材料はもともと電気的にも熱的にも絶縁体であるが、電気を通す導電性高分子材料が開発されてからは、フレキシブルディスプレイやウェアラブルデバイスなどの分野に応用が広がっている。
そこで電気伝導性だけでなく、熱伝導性を備えた高分子材料を実現することで新たな応用分野を開拓しようというのが今回の研究のねらいである。

高分子(ポリマー)を顕微鏡で拡大して観察すると、分子ユニットである単量体(モノマー)同士が端部でつながった長いチェーン状の構造をしていることがわかる。
このチェーンはスパゲッティの麺のように乱雑に絡まっているため、熱のキャリアは構造中を移動することが難しく、また結び目でトラップされやすくなる。これが高分子材料が熱を伝えにくいことの理由であるといえる。

高分子材料に熱伝導性をもたせる研究はこれまでにも行われてきており、2010年には高分子が乱雑に絡まった標準的なポリエチレン試料から、チェーンが直線状に揃った「超延伸ナノファイバー」と呼ばれる構造を作りだした例がある。

続きはソースで

関連ソース画像
https://news.mynavi.jp/article/20180409-613997/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180409-613997/
ダウンロード


引用元: 【高分子材料】MIT、熱伝導性の高いプラスチックを開発 - PC筐体などに応用期待[04/09]

【高分子材料】MIT、熱伝導性の高いプラスチックを開発 - PC筐体などに応用期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/16(金) 21:41:48.16 ID:CAP_USER
東京農工大学は、細胞の様な鋳型を用いて1/100mmスケールのミクロなゼリー球を作製し、そのゼリー球の硬さを測ることにより、ゲル化させる際の鋳型のサイズによってゼリーの硬さが大きく変化することを発見したと発表した。

同研究は、東京農工大学大学院工学研究院先端物理工学部門の柳澤実穂テニュアトラック特任准教授、大学院生の酒井淳氏、村山能宏准教授、慶應義塾大学理工学部生命情報学科の藤原慶専任講師、九州大学先導物質化学研究所の木戸秋悟教授らの研究グループによるもので、同研究成果は、3月15日付でアメリカ化学会誌「ACS Central Science」オンライン版に掲載された。

ゼラチンからなるミクロなゼリー(以下、ミクロゲル)は、食品や化粧品、医薬品など、日用品には欠かせない物となっている。それらの食感や質感、強度などの機能を強く支配する力学的性質は、ミクロゲルが分散した水溶液や大きなゲルに対してはよく知られているものの、ひとつのミクロゲルが示す力学的性質は測定が困難で、詳細な解析が渇望されていた。

続きはソースで

https://news.mynavi.jp/article/20180316-601028/images/001l.jpg
https://news.mynavi.jp/article/20180316-601028/images/002l.jpg
https://news.mynavi.jp/article/20180316-601028/
ダウンロード


引用元: 【化学】ゼリーは小さいほど硬くなることを発見

ゼリーは小さいほど硬くなることを発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/09/07(木) 23:46:13.63 ID:CAP_USER
発表・掲載日:2017/09/04
水をはじき、光を通し、つぶしても割れない断熱材を開発
-ナノ繊維系材料の耐湿性を向上させ、透明断熱材の実現に前進-

ポイント
・天然高分子のキトサンを素材とした高性能断熱材に撥水(はっすい)性を付与
・キトサン系材料の課題であった水への弱さを克服し、実用化へ大きく前進
・住宅やビルの窓などに貼り付けられる光透過性断熱材としての応用に期待


概要
国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)化学プロセス研究部門【研究部門長 濱川 聡】階層的構造材料プロセスグループ 竹下 覚 研究員、依田 智 研究グループ長は、エビやカニの甲殻から得られる天然高分子のキトサンを素材とし、撥水(はっすい)性、光透過性、柔軟性を兼ね備えた超低密度の多孔体(撥水エアロゲル)を開発した。
 
この多孔体は表面が疎水化された微細なキトサン繊維の三次元網目構造からなり、超高空隙率(体積の96~97%が空隙)を示す。疎水化によって、従来の親水性キトサンエアロゲルの均質なナノ構造を維持しつつ、多糖類のナノ繊維からなる材料の課題である耐湿性を改善した。これにより、光透過性断熱材としての実用化の可能性を開いた。
 
なお、この技術の詳細は、英国王立化学会の学術論文誌Nanoscaleに掲載されるが、それに先立ち、オンライン版が2017年8月21日(日本時間)に掲載された。

続きはソースで

▽引用元:産業技術総合研究所 2017/09/04
http://www.aist.go.jp/aist_j/new_research/2017/nr20170904/nr20170904.html
ダウンロード


引用元: 【材料】水をはじき、光を通し、つぶしても割れない断熱材を開発 ナノ繊維系材料の耐湿性を向上させ、透明断熱材の実現に前進/産総研©2ch.net

水をはじき、光を通し、つぶしても割れない断熱材を開発 ナノ繊維系材料の耐湿性を向上させ、透明断熱材の実現に前進/産総研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/09(月) 18:09:43.04 ID:???.net
産総研:天然高分子のキトサンを素材とした柔軟で透明な断熱材を開発
http://www.aist.go.jp/aist_j/press_release/pr2015/pr20151109/pr20151109.html

画像
http://www.aist.go.jp/Portals/0/resource_images/aist_j/press_release/pr2015/pr20151109/fig_1.jpg
開発した柔軟で透明な断熱材の構造モデル(左)と電子顕微鏡写真(右)
http://www.aist.go.jp/Portals/0/resource_images/aist_j/press_release/pr2015/pr20151109/fig1.jpg
図1 今回開発した柔軟で透明な断熱材の製造プロセス(上)と外観写真(下)
http://www.aist.go.jp/Portals/0/resource_images/aist_j/press_release/pr2015/pr20151109/fig2.jpg
図2 今回開発した柔軟で透明な断熱材の圧縮挙動(左)と、薄い試料を折り曲げた様子(右)


ポイント

•天然高分子のキトサンを素材とした高性能断熱材を開発
• 微細なキトサン繊維が均質に絡み合った構造により、柔軟性・透明性・高断熱性能を同時に実現
• 既存住宅の窓に貼り付ける断熱シートや自動車の窓用の透明な断熱材としての応用に期待


概要

 国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)化学プロセス研究部門【研究部門長 濱川 聡】階層的構造材料プロセスグループ 竹下 覚 研究員、依田 智 研究グループ長は、天然高分子のキトサンを素材とした柔軟で透明な高性能断熱材を開発した。

 この断熱材は、直径5~10 nmの微細なキトサン繊維が三次元的に均一に絡み合った構造をしており、既存の透明断熱材であるシリカエアロゲルに近い透明性と断熱性に加えて、シリカエアロゲルにはない柔軟性をあわせ持つ。既存住宅の窓を高断熱化する断熱シートや、自動車の窓の断熱層などへの応用が期待される。

 なお、この断熱材の詳細は、アメリカ化学会の学術論文誌Chemistry of Materialsに掲載されるが、それに先立ち、オンライン版が2015年11月7日(日本時間)に掲載された。

続きはソースで 

ダウンロード (1)
 

引用元: 【材料科学】天然高分子のキトサンを素材とした柔軟で透明な断熱材を開発 産総研

天然高分子のキトサンを素材とした柔軟で透明な断熱材を開発 産総研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/06/25(木) 07:33:00.07 ID:???.net
合成高分子でナノの七宝文様ができた―高分子で創る「かたち」が生化学、幾何学にもインパクト― | 東工大ニュース | 東京工業大学
http://www.titech.ac.jp/news/2015/031563.html

画像
http://www.titech.ac.jp/news/img/n000880_tezuka_fig1.jpg
図1.五環4重縮合トポロジーの七宝文様高分子(赤で表示)と関連する多環状多重縮合構造高分子の「かたち」(なお、当研究室でこれまでに合成された高分子を緑で表示している)
http://www.titech.ac.jp/news/img/n000880_tezuka_fig2.jpg
図2.ESA-CF法によって得られる単環状および双環状高分子前駆体を用いたクリック法およびクリップ法による七宝文様高分子の合成経路

(前略)

研究の背景と経緯

やわらかな「ひも」状の高分子セグメントで組み立てられる「かたち」には限りない設計の自由度がある。このため、高分子の「かたち(トポロジー)」に基づく高分子材料設計指針の確立はサイエンスとしての意義だけでなく、革新的な産業基盤技術を創出する途を拓くものと期待される。

とりわけ、直鎖状、分岐状、さらに多環状構造高分子を精密かつ自在に設計する合成プロセスに基礎を置いた、高分子の「かたち」に基づくブレークスルー物性・機能の創出は高分子材料化学・工学を超えて、ナノテクノロジーによる新材料創製を推進する基礎技術としても期待されている。

同研究グループはこれまで、多種・多様な単環状・多環状トポロジー高分子を効率的に合成する反応プロセスの開発を進めてきた(図1)。その結果、独自に分子設計した末端官能性高分子前駆体(テレケリクス[用語5])による高分子間静電相互作用を駆動力とする自己組織化と、さらに選択的共有結合変換を統合した画期的方法(ESA-CF法:Electrostatic Self-Assembly and Covalent Fixation)を確立した。

さらにこのESA-CF法と新しい有機合成化学手法(クリック法やクリップ法など)を組み合わせ、新奇トポロジー高分子を自在に提供するブレークスループロセスの開発を進めてきた。

今回、高分子の「かたち」を究める途の里程標としてきわめて挑戦的な、五環4重縮合トポロジーの七宝文様高分子の合成に挑戦した。七宝文様(図1)は古来わが国の意匠デザインとして家紋などに用いられてきただけでなく、トポロジー幾何学でもD4グラフとして知られている。

また、最近ユニークな生理活性を示す多重折りたたみ環状オリゴペプチド(cyclotide)の構造との関連でも注目されている。したがって、ナノスケールでの七宝文様(図1)の構築は、高分子合成化学領域だけでなく生化学からトポロジー幾何学にまで広くインパクトを与えるものと期待される。

詳細・続きはソースで 

 
images

引用元: 【高分子化学】五環4重縮合トポロジー(七宝文様)高分子の合成に成功 生化学、幾何学にもインパクト 東工大

五環4重縮合トポロジー(七宝文様)高分子の合成に成功 生化学、幾何学にもインパクト 東工大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/02/09(月) 23:29:13.86 ID:???.net
掲載日:2015年2月9日
http://news.mynavi.jp/news/2015/02/09/174/

理化学研究所(理研)は2月6日、試験管中で原料を混ぜるだけで高分子を精密に合成する方法を開発したと発表した。

1


同成果は、同所 創発物性科学研究センター 創発ソフトマター機能研究グループの宮島大吾基礎科学特別研究員、相田卓三グループディレクター(東京大学大学院 工学系研究科 教授)、東京大学大学院 工学系研究科の姜志亨大学院生、大阪大学大学院 工学研究科の井上佳久教授らによるもの。詳細は、米国の科学雑誌「Science」のオンライン版に掲載された。

プラスチックやゴムのような素材は日常生活になくてはならないものである。それらの素材は小さな分子(モノマー)が鎖状につながった高分子(ポリマー)からできており、必要とする機能に合わせて、つなぎ方が精密に制御されている。
しかし、ニーズに合わせ多種多様な高分子を作製するには、高度な専門知識と熟練した技術、反応条件を制御できる設備による精密合成が必要である。一方で、1980年代後半に、"温和な条件下で原料を混ぜるだけ"でできる高分子の超分子ポリマーの合成法が報告されているが、この合成法では小分子同士が勝手に連結してしまうため、思い通りの設計が実現できない。

そこで、研究グループは、小分子が持つ2つの連結点をあらかじめ分子内で接着することで環状にし、他の分子と勝手に連結できなくした。

続きはソースで

画像1 
従来の高分子合成法の模式図。小分子Bが持つ赤と青の連結点がつながることで、小分子Bから高分子が合成できる
http://news.mynavi.jp/news/2015/02/09/174/images/001l.jpg


画像2
連結反応開始剤を用いた精密高分子合成の模式図。青い連結点だけを持つ小分子A(連結反応開始剤)が環状になった小分子Bの連結点に近づくと、小分子Bは赤い連結点と青い連結点を解き、赤い連結点を小分子Aの青い連結点につないで2量体を形成する。つながる相手がいなくなった小分子Bの青い連結点は、別の小分子Bの赤い連結点とつながり、3量体を形成する。環状分子の数だけこの連結を繰り返す
http://news.mynavi.jp/news/2015/02/09/174/images/002l.jpg

<参照>
誰でも、どこでも、高分子を精密合成できる新手法を開発 | 理化学研究所
http://www.riken.jp/pr/press/2015/20150206_1/

A rational strategy for the realization of chain-growth supramolecular polymerization
http://www.sciencemag.org/content/347/6222/646.short

引用元: 【材料物性】理研など、試験管中で原料を混ぜるだけで高分子を精密に合成する方法を開発

【すごい?】理研など、試験管中で原料を混ぜるだけで高分子を精密に合成する方法を開発の続きを読む

このページのトップヘ