1: ベガスφ ★ 2013/09/03(火) 23:46:13.85 ID:???

"転写調節因子「Sbno2」は次世代の骨粗しょう症治療薬のカギの可能性 - 阪大"

大阪大学(阪大)は8月28日、転写調節因子「Sbno2」が骨を吸収する「破骨細胞」の正常な細胞融合に必須であることを個体レベルで明らかにすることに成功したと発表した。
(中略)

「細胞融合」とは2個以上の同種あるいは異種の細胞同士が細胞膜を融合させることで単一細胞となる現象を意味する。人工的な細胞融合技術なくして抗体医療や免疫学の発展が望めなかったことを考えると、細胞融合が現代医学に与えたインパクトは計り知れないという。
歴史的背景から、細胞融合は一般には病原体や薬剤によって誘導されるイメージが強いが、この現象が発生過程や細胞分化といった生理的局面においても重要な役割を果たしていることは意外に知られていない。

例えば、精子と卵子は受精過程で融合し、骨格筋細胞は最終分化段階において融合プロセスを経て多核の巨細胞となる。さらに、破骨細胞は多核細胞の代表格だが、この細胞は骨芽細胞上に存在する「破骨細胞分化因子(RANKL:Receptor Activator of Nuclear Factor-kappa B Ligand)」が単核の「破骨細胞前駆細胞」に働きかけて、それらの融合が促進された結果として形作られるのだ。
(中略)

破骨細胞特異的遺伝子群の中でも、DC-STAMPは破骨細胞融合のマスターレギュレーターであることが知られており、DC-STAMP欠損マウスからは単核の破骨細胞しか形成されない。
そして最近になり、破骨細胞におけるDC-STAMPの発現は転写因子MITFによって誘導され、破骨細胞前駆細胞では転写抑制因子「Tal1」がDC-STAMPプロモータに結合してMITFによるDC-STAMPの転写活性化をブロックしていることが明らかにされた。
こうしたことから、破骨細胞融合は複数の転写因子によって厳密に調節されていると考えられているという。
(中略)

こうしたことから、Sbno2は炎症性サイトカイン産生を負に制御する因子と考えられたが、個体レベルでのその自然免疫応答に果たす役割や生理的機能については明らかではなかった。
そこで研究チームは今回、その疑問に答えるため、ノックアウトマウス技術を用いたSbno2の機能解析を試みたのである。

Sbno2は骨髄での発現が高く、血球系細胞の中ではマクロファージや破骨細胞で特に強く発現していることが確認された。そこで、これらの細胞におけるSbno2の機能を明らかにする目的でノックアウトマウスが作成されたところ、10週齢において野生型と比べ若干の体重減少が認められ、成長障害が疑われたのである。

その一方で、明らかなマクロファージ・好中球・リンパ球などの分化異常は認められておらず、マクロファージの炎症性サイトカイン産生能やNF-kBの活性化も正常であった。
こうしたことから、Sbno2は以前報告されていたようなNF-kBの抑制作用は有していないことが明らかとなったのである。

次にSbno2ノックアウトマウスの骨のが解析が行われ、すると10週齢において著明な骨量の上昇が確認され、
「大理石骨病」を発症していることが判明した。組織解析では破骨細胞の数は正常であったが、1細胞当たりの核の数が減少しており、融合障害が疑われたのである(画像1)。
さらに、骨形成速度の低下も認められたことから、骨の形成を行う「骨芽細胞」の分化障害の存在も示唆された。

実際、in vitroでSbno2ノックアウトマウス由来の骨芽細胞を培養すると軽度の分化障害が観察された。
ノックアウト由来の骨芽細胞では骨芽細胞分化を促進する因子である Jagged1の発現が著明に減弱しており、これを培養液中に加えると分化障害が救済されたことから、Sbno2は Jagged1の発現を正に制御することで適切な骨芽細胞分化を実現させていることも明らかとなった。次に、ノックアウト由来の細胞を使ってin vitroにおけるRANKL誘導性の破骨細胞分化を検討したところ、in vivoで観察されたように破骨細胞あたりの核数が著明に低下していた(画像1・2)。個々の破骨細胞の骨吸収活性と分化マーカーの発現状態は正常であったことから、この異常は融合障害に起因していると考えられた。
(つづく)

18

2013/08/30
http://news.mynavi.jp/news/2013/08/30/073/index.html

Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP
http://jem.rupress.org/content/early/2013/08/20/jem.20130512.abstract?sid=438735f6-02b9-4668-be6a-7caad32cef83



【骨代謝】転写調節因子「Sbno2」のノックアウトでペテローシス発症、「Sbno2」は破骨細胞の細胞融合に必須であるの続きを読む