理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

アンモニア

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/09/23(金) 12:13:32.93 ID:CAP_USER
共同発表:世界最高レベルの性能を持つアンモニア合成触媒を開発
http://www.jst.go.jp/pr/announce/20160921/index.html
http://www.jst.go.jp/pr/announce/20160921/icons/zu1.jpg
http://www.jst.go.jp/pr/announce/20160921/icons/zu2.gif


ポイント
アンモニアは化学肥料の原料として重要な化学物質であり、近年は再生可能エネルギーの貯蔵・輸送を担うカーボンフリーのエネルギーキャリアとしても重要性が増している。そのため、アンモニアを高効率で生産する高活性な触媒の開発が求められてきた。
既存の工業プロセスよりも理想的な条件で、世界最高レベルのアンモニア合成性能を示す触媒を開発することに成功した。
開発した触媒の表面は特殊な構造を持つこと、さらにその表面構造と担体の塩基性の相乗効果によって、高いアンモニア合成活性が実現していることを明らかにした。
開発した触媒によって、既存のプロセスの省エネ化・合理化、再生可能エネルギー由来のアンモニア生産プロセスの実現が期待できる。


大分大学 工学部の永岡 勝俊 准教授らの研究グループは、既存の工業プロセスよりも理想的な条件で、世界最高レベルのアンモニア合成活性を示す新規触媒として、酸化プラセオジム注1)にルテニウム注2)を担持した触媒(Ru/Pr2O3)を開発しました。

アンモニアは化学肥料の原料として重要な化学物質であり、世界の食料生産の根幹を担っています。近年は再生可能エネルギーの貯蔵・輸送を担うエネルギーキャリア注3)としても注目されています。従来の工業プロセスに用いられている鉄触媒は高濃度のアンモニアが存在する条件では充分に働かないという特徴があります。そのため、非常に高い圧力と温度下でアンモニア合成が行われているにもかかわらず、投入エネルギー量に見合った量のアンモニアが回収できず、多量のエネルギーが浪費されているという問題があります。この問題を解決するためには、現実的な条件(350―400ºC、10―100気圧)で高濃度のアンモニアを得ることができるプロセスの実現と、そのキーテクノロジーとなる、高性能な触媒の開発が求められてきました。

研究グループでは、工業上理想的な条件において、生成速度換算で従来型触媒の約2倍という、非常に高いアンモニア合成活性を示し、高効率でアンモニアを得ることができるRu/Pr2O3(図1)を開発するとともに、①ルテニウムが結晶性の低いナノレイヤーとして担持されていること、②Pr2O3が高い塩基性を有すること、という2つの特徴が相乗的に作用することで、アンモニア合成反応の律速段階である窒素分子の切断が促進され、高活性が実現されていることを明らかにしました。開発した触媒によって、アンモニア合成プロセスの合理化・省エネ化、再生可能エネルギー由来のアンモニア生産プロセスの実現が期待できます。また、特殊な形態で担持されたルテニウムはさまざまな反応で優れた触媒性能を示すことが期待できます。

本研究成果は、英国王立化学会(The Royal Society of Chemistry)のフラッグシップジャーナルChemical Scienceのオンライン版にて近日公開されます。

本研究は、科学技術振興機構(JST) 戦略的創造推進事業 チーム型研究(CREST)「再生可能エネルギーの輸送・貯蔵・利用に向けた革新的エネルギーキャリア利用基盤技術の創出」(研究総括:江口 浩一 京都大学 大学院工学研究科 教授)の研究課題「エネルギーキャリアとしてのアンモニアを合成・分解するための特殊反応場の構築に関する基盤技術の創成」(研究代表者:永岡 勝俊 大分大学 工学部 准教授)(研究期間:平成25~30年度)の一環で実施されました。

続きはソースで

 
ダウンロード

引用元: 【触媒科学】世界最高レベルの性能を持つアンモニア合成触媒を開発 金属の特殊な積層構造と塩基性酸化物の相乗作用 [無断転載禁止]©2ch.net

世界最高レベルの性能を持つアンモニア合成触媒を開発 金属の特殊な積層構造と塩基性酸化物の相乗作用の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/08/03(水) 12:21:04.00 ID:CAP_USER
【プレスリリース】安価な鉄錯体を用いて温和な条件下で窒素ガスの触媒的還元に成功! -窒素ガスから触媒的なアンモニアおよびヒドラジン合成を実現- - 日本の研究.com
https://research-er.jp/articles/view/48481
https://research-er.jp/img/article/20160722/20160722191413.png
https://research-er.jp/img/article/20160722/20160722192052.png


1. 発表者:

東京大学
栗山 翔吾(東京大学大学院工学系研究科化学生命工学専攻 大学院生)
荒芝 和也(東京大学大学院工学系研究科システム創成学専攻 特任研究員)
中島 一成(東京大学大学院工学系研究科総合研究機構 助教)
石井 和之(東京大学生産技術研究所 教授)
西林 仁昭(東京大学大学院工学系研究科システム創成学専攻 教授)

九州大学
松尾 裕樹(九州大学先導物質研究所 大学院生)
田中 宏昌(九州大学先導物質研究所 特任准教授)
吉澤 一成(九州大学先導物質研究所 教授)


2.発表のポイント:

•窒素ガスを触媒的に還元する鉄窒素錯体を分子設計し、その合成に成功した。
•新規に合成した鉄錯体を用いて、温和な反応条件下で、還元剤およびプロトン酸を利用することで窒素ガスから触媒的にアンモニアおよびヒドラジンを生成した。
•本成果は従来の高温高圧の極めて厳しい反応条件を要するアンモニア合成法(ハーバー・ボッシュ法)の代替と成り得るため、大幅なコスト削減の達成が期待でき、次世代の窒素固定触媒の開発の指針となる重要な知見である。


3.発表概要:

 窒素 (N) は核酸やアミノ酸、タンパク質に含まれ、生命を構成する上で必須の元素である。窒素は大気中に窒素ガス (N2) として豊富に存在しているが、不活性ガスとよばれるほど反応性に乏しく、人間が直接窒素源として利用することはできない。したがって生命活動を維持する上で、窒素ガスを還元して利用可能なアンモニア(注1)を合成する反応の開発は非常に重要である。今回、東京大学大学院工学系研究科の西林仁昭教授らの研究グループと九州大学先導物質研究所の吉澤一成教授らの研究グループは、窒素分子が配位した鉄窒素錯体(注2)を新規に分子設計・合成し、それを触媒として用いて常圧の窒素ガスを直接アンモニアへと変換することに成功した。さらに反応条件によって窒素ガスから選択的にヒドラジン(注3)が生成するというこれまでに例がない触媒反応をみいだした(図1)。

 本研究の成果は、現法のハーバー・ボッシュ法(注4)に代わり得る次世代型の窒素固定法であり、今後の窒素固定触媒開発の指針となると期待される。

 本研究成果は、2016 年の 7 月 20 日の「Nature Communications(ネイチャー・コミュニケーションズ)」のオンライン速報版で公開されます。

続きはソースで

 
ダウンロード (1)

引用元: 【触媒科学】安価な鉄錯体を用いて温和な条件下で窒素ガスの触媒的還元に成功! [無断転載禁止]©2ch.net

安価な鉄錯体を用いて温和な条件下で窒素ガスの触媒的還元に成功!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/07/19(火) 12:19:11.25 ID:CAP_USER
共同発表:アンモニアから燃料電池自動車用水素燃料を製造
http://www.jst.go.jp/pr/announce/20160719-2/index.html
http://www.jst.go.jp/pr/announce/20160719-2/icons/zu1.jpg


アンモニアから燃料電池自動車注1)用高純度水素を製造する実用可能な技術の開発に世界で初めて成功し、アンモニアを原料とした水素ステーション(アンモニア水素ステーション)の実現に向け大きく踏み出しました。

内閣府総合科学技術・イノベーション会議の戦略的イノベーション創造プログラム(SIP)「エネルギーキャリア」(管理法人:国立研究開発法人 科学技術振興機構【理事長 濵口 道成】)の委託研究課題「アンモニア水素ステーション基盤技術」において、国立大学法人 広島大学、昭和電工(株)、国立研究開発法人 産業技術総合研究所、(株)豊田自動織機、大陽日酸(株)は共同研究により、アンモニアから燃料電池自動車用高純度水素を製造する技術の開発に成功しました。

アンモニアはNH3で示されるように、多くの水素を含んでおりエネルギーキャリア注2)として期待されています。しかしながら、アンモニア水素ステーション実現のためにブレイクスルーしなければならない大きな技術障壁としては次の3点がありました。 ①高活性高耐久性アンモニア分解触媒 ②残存アンモニア濃度を0.1ppm以下にでき、再生が容易なアンモニア除去材料 ③水素純度99.97%を達成できる精製技術

今回、世界トップレベルのアンモニア分解用ルテニウム系触媒の調製、アンモニア除去材料の作製及び水素精製技術を確立することにより、それらを用いたアンモニア分解装置、残存アンモニア除去装置及び水素精製装置を実証システムの1/10スケールで開発しました。これらの装置を組み合わせることで、世界で初めてアンモニアを原料とした燃料電池自動車用水素燃料製造注3)が可能となりました。現在、当チームでは昭和電工(株) 川崎事業所においてシステムの実証を行うべく、プロセスの検討を行っています。

今回の成功は、アンモニアを燃料電池自動車用水素燃料へ利用するための技術の大きな進展であり、将来、アンモニアを利用する燃料電池自動車用水素ステーションの実現が期待され、ひいてはCO2削減に大きく貢献することになります。

この技術の詳細は、2016年7月20日に日本科学未来館で開催されるSIPエネルギーキャリア公開シンポジウムで発表されます。

続きはソースで

images (1)
 

引用元: 【エネルギー技術】アンモニアから燃料電池自動車用水素燃料を製造 [無断転載禁止]©2ch.net

アンモニアから燃料電池自動車用水素燃料を製造の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/06/07(火) 18:01:02.37 ID:CAP_USER
木星の恐ろしげな雲、その下には何があるの? 最新研究が報告 (sorae.jp) - Yahoo!ニュース
http://headlines.yahoo.co.jp/hl?a=20160607-00010001-sorae_jp-sctch

大きな目玉「大赤斑」がグルグル表面を回り、どこか恐ろしげな太陽系第5惑星こと「木星」。超高速のジェット気流が渦巻くともいわれるこの木星の大気ですが、今回研究者は「木星の電波地図」の作成に成功。これにより、雲の下に隠されたアンモニアが渦巻く木星の大気の様子が観測されました。

今回の観測に用いられたのはカール・ジャンスキー超大型干渉電波望遠鏡群(VLA)です。そして研究の共著者であるメルボルン大学のRobert Sault氏によると、「木星は10時間に1度のスピードで自転しているので、電波地図の作成は通常難しいのです。しかし我々は新たな方法を用いることで、アンモニアが上昇と下降する様子を観測することができました」と報告しています。
 
そして今回観測されたのは、表層から100km下のアンモニアです。研究者たちはアンモニアガスの三次元的な地図を作ることにより、その上昇と下降の様子を観測。そして、アンモニアを豊富に含んだガスが雲から上層に現れることが判明しました。一方、電波や赤外線などでスポットとして観測される場所は、アンモニアが少ないそうです。
 
さらに、上部の硫化水素アンモニウムの層の温度はマイナス73℃、そしてアンモニア氷の雲の温度はマイナス122.22℃であることもわかりました。今後、研究者たちは木星の雲を生成する「熱源」を探る予定です。そのシステムがわかれば、太陽系外の木星に似た巨大な惑星についても理解が深まることが期待されています。
 
このようにさまざまな事実が判明しつつある木星ですが、さらに来月にはNASAの木星探査機「ジュノー」が同惑星に到達します。ジュノーは木星を周回しつつ、水やアンモニアなどの大気の成分を観測する予定です。意外と知られていなかった木星の本当の姿ですが、最新研究や探査機によっていよいよ解き明かされようとしています。

images (2)
 

引用元: 【惑星科学】木星の恐ろしげな雲、その下には何があるの? 最新研究が報告 [無断転載禁止]©2ch.net

木星の恐ろしげな雲、その下には何があるの? 最新研究が報告の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/05/15(日) 11:27:54.59 ID:CAP_USER
産総研:青色顔料が高性能アンモニア吸着材であることを発見
http://www.aist.go.jp/aist_j/press_release/pr2016/pr20160510_2/pr20160510_2.html


ポイント

•青色顔料のプルシアンブルーのアンモニア吸着能が従来のアンモニア吸着材に勝ることを発見
• 元素置換や欠陥導入でプルシアンブルーの構造を原子レベルで制御し、アンモニア吸着容量をさらに向上
• 臭気を感じられないほど低濃度のアンモニアも吸着でき、悪臭やPM2.5の原因物質の除去に期待


概要


 国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)ナノ材料研究部門【研究部門長 佐々木 毅】ナノ粒子機能設計研究グループ 髙橋 顕 研究員、川本 徹 研究グループ長らは、国立大学法人 東京大学【総長 五神 真】大学院理学系研究科化学専攻 大越 慎一 教授と共同で、顔料の一つであるプルシアンブルーが、一般的なアンモニア吸着材より高い吸着能を持つことを発見するとともに、プルシアンブルーの構造を制御して、アンモニア吸着能を高めたプルシアンブルー類似体を合成した。

 プルシアンブルーは古くから使用されている顔料の一つである。今回、一般的なアンモニア吸着材であるゼオライトや活性炭よりもプルシアンブルーの方がアンモニアをよく吸着することを確かめた。また、プルシアンブルーに含まれる金属を他の金属で置換するとともに欠陥量を増加させた類似体では、アンモニア吸着量が増加した。さらに、一般的なアンモニア吸着材の場合、低濃度アンモニアの吸着能が低いが、プルシアンブルーは、空気中の「臭わないレベル」の低濃度アンモニアでも吸着できた。プルシアンブルー類似体はいったん吸着したアンモニアを放出させて、再利用できることも確認した。

 この技術は、介護施設等におけるアンモニア臭対策、PM2.5の発生抑制技術や、水素燃料中のアンモニアを除去する技術としての利用が期待される。

 なお、本技術の詳細は米国化学会誌Journal of the American Chemical Societyに掲載されるが、それに先立ち、オンライン版(Just Accepted Manuscript)が2016年5月5日に掲載された。

続きはソースで

ダウンロード (1)
 

引用元: 【材料科学/環境】青色顔料のプルシアンブルーが高性能アンモニア吸着材であることを発見 悪臭除去、PM2.5対策、燃料電池用水素精製へ期待 [無断転載禁止]©2ch.net

青色顔料のプルシアンブルーが高性能アンモニア吸着材であることを発見 悪臭除去、PM2.5対策、燃料電池用水素精製へ期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/03/19(土) 08:31:39.33 ID:CAP_USER.net
【プレスリリース】可視光・水・空中窒素からのアンモニアの合成に成功 - 日本の研究.com
https://research-er.jp/articles/view/44023


研究成果のポイント

•ナノ空間に光を濃縮することができる光アンテナ構造と,窒素を選択的に吸着する助触媒を組み合わせることで,次世代エネルギーキャリアとして注目されるアンモニアを,可視光照射下で水と窒素から選択的に合成することに成功。
•化学肥料や化成品の原料であるアンモニアは,全世界のエネルギー消費の 1%以上を用いて合成されており,可視光を有効利用する本人工光合成は,地球規模の省エネにも大きく貢献可能。


研究成果の概要

 北海道大学電子科学研究所の三澤弘明教授・押切友也助教の研究グループは,酸化物半導体基板に金ナノ微粒子を配置した光電極を用い,
究極の光エネルギー変換系として注目を集めている人工光合成への展開を図ってきました。
本研究では,窒素を効率よくアンモニアに変換可能な助触媒を開発して,金ナノ微粒子を配置した光電極に担持することにより,水・窒素・可視光から,次世代のエネルギーキャリアとして注目されているアンモニアを選択的に合成することに成功しました。

続きはソースで

ダウンロード
 

引用元: 【触媒科学】可視光・水・空中窒素からのアンモニアの合成に成功 窒素を選択的に吸着する助触媒(Zr/ZrOx)を開発

可視光・水・空中窒素からのアンモニアの合成に成功 窒素を選択的に吸着する助触媒(Zr/ZrOx)を開発の続きを読む

このページのトップヘ