理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

インジウム

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/06/19(金) 18:57:00.12 ID:???.net
太陽光:カーボンナノチューブで変換効率6%の有機薄膜太陽電池を開発、インジウムが不要に - スマートジャパン
http://www.itmedia.co.jp/smartjapan/articles/1506/19/news019.html

画像
http://image.itmedia.co.jp/smartjapan/articles/1506/19/km_tokyo1.jpg
図1:開発に成功したカーボンナノチューブ透明電極とアルミニウム裏面電極による“曲がる”有機薄膜太陽電池 出典:東京大学
http://image.itmedia.co.jp/smartjapan/articles/1506/19/km_tokyo2.jpg
図2:カーボンナノチューブ透明電極を用いた有機薄膜太陽電池の発電メカニズム。有機発電層内で光照射下、電子ドナーから電子アクセプターに電子が移り、プラスの電荷(ホール)とマイナスの電荷(電子)が生ずる。プラスの電荷はカーボンナノチューブ透明電極に、電子は裏面電極側に流れることで太陽電池となる。 出典:東京大学
http://image.itmedia.co.jp/smartjapan/articles/1506/19/km_tokyo3.jpg
図3:酸化モリブデンで修飾した単層カーボンナノチューブ薄膜の走査型電子顕微鏡写真(斜め上方からの撮影)。単層カーボンナノチューブ(SWCNT)から酸化モリブデン(MoO3)へ電子が移動し、カーボンナノチューブはプラスの電荷を注入される。この状態で、カーボンナノチューブ薄膜はプラスの電荷を選択的に捕集し、輸送する透明電極となる。 出典:東京大学


東大の研究グループは、レアメタルの「インジウム」を含まないカーボンナノチューブ有機薄膜太陽電池の開発に成功した。将来的に太陽電池の低コスト化や太陽エネルギーの利用拡大に役立つことが期待される。


 東京大学大学院理学系研究科の松尾豊特任教授、工学系研究科の丸山茂夫教授らの研究グループは、カーボンナノチューブを有機薄膜太陽電池の透明電極として用いるための方法論を確立。レアメタルである「インジウム」を用いない有機薄膜太陽電池のエネルギー変換効率を向上させた他、カーボンナノチューブ薄膜の柔軟性を生かしたフレキシブルな太陽電池の開発に成功した(図1)。

レアメタルを使わず供給を安定化 

 有機系太陽電池は低エネルギー製造プロセスにより将来的に安価に製造されることが見込まれる新しい太陽電池で、世界中で活発に研究開発が行われている(関連記事)。

 エネルギー変換効率や耐久性など解決すべき問題がまだあるものの、近年有機系太陽電池の一種である有機薄膜太陽電池ではエネルギー変換効率が10%を突破。同様に有機金属ペロブスカイト太陽電池では、エネルギー変換効率が20%を超えており、無機系の太陽電池であるアモルファスシリコン太陽電池や多結晶シリコン太陽電池と同等の性能が得られるようになってきている(関連記事)。

 有機薄膜太陽電池の透明電極には酸化インジウムスズが用いられるケースが多い。しかし、将来的に有機系太陽電池を大量生産する場合、レアメタルであるインジウムは需要に対して供給量が逼迫(ひっぱく)するリスクがある。

続きはソースで

01


引用元: 【エネルギー技術】カーボンナノチューブで変換効率6%の有機薄膜太陽電池を開発 インジウムが不要に 東大

カーボンナノチューブで変換効率6%の有機薄膜太陽電池を開発 インジウムが不要に 東大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: エクスプロイダー(北海道) 2013/12/24(火) 10:39:53.86 ID:/rs1O25W0 BE:22521784-DIA(110001) ポイント特典

パナソニックは、「エコプロダクツ2013」(2013年12月12~14日、東京ビッグサイト)において、同社が開発を進めている人工光合成の最新研究成果を一般公開した。

ダウンロード (3)

従来、人工光合成による生成物はギ酸(HCOOH)だったが、触媒の材料をインジウムから銅に置き換えてメタン(CH4)を生成することに成功した。今後は、2015年までに、植物と同等レベルの太陽光エネルギー変換効率(照射した太陽光のエネルギーに対して、生成した有機物が有するエネルギーの割合)でメタンを生成することを目標としている。

従来の生成物だったギ酸は、化学メーカーの原材料として利用されている他、燃料電池車の燃料として注目されている水素の原料にもなる。しかし、ギ酸そのものは、直接燃料として利用はできない。一方、メタンは、都市ガスなどに利用される燃料ガスである。ギ酸と同様に水素合成の原料にもなる。

現在、パナソニックの人工光合成における、メタン生成時の太陽光エネルギー変換効率は0.04%。これを、バイオマスとして使用されている植物(スイッチグラス)の光合成と同等の0.2%にまで高めたい考えだ。

(後略)

【ソースに画像あり】
http://monoist.atmarkit.co.jp/mn/articles/1312/16/news095.html



【マジか】パナソニック、太陽光からメタンガスの人工製造に成功 / シェールガスを超えるエネルギー革命かの続きを読む

このページのトップヘ