理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

トランジスタ

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/06/05(月) 22:14:59.20 ID:CAP_USER
http://eetimes.jp/ee/articles/1706/05/news053.html

台湾・台北で開催された「COMPUTEX TAIPEI 2017」で、NVIDIAのCEOであるJensen Huang氏は、「ムーアの法則は終わった。マイクロプロセッサはもはや、かつてのようなレベルでの微細化は不可能だ」と、ムーアの法則の限界について言及した。
[Alan Patterson,EE Times]
2017年06月05日 11時30分 更新

「ムーアの法則は終わった」

 「ムーアの法則は終わった」。NVIDIAのCEO(最高経営責任者)を務めるJensen Huang氏は、アカデミック界で長年ささやかれてきた説について、大手半導体企業として恐らく初めて言及した。

 ムーアの法則は、Intelの共同設立者であるゴードン・ムーア氏が1965年に、「トランジスタの微細化は非常に速く進み、集積度は毎年倍増していく」と提唱したことから生まれた。ただし、微細化の速度は1975年に、「2年ごとに2倍になる」と変更された。

 Huang氏は、台湾・台北で開催された「COMPUTEX TAIPEI 2017」(2017年5月30日~6月3日)で、報道陣やアナリストに向けて、「スーパースカラーによるパイプラインの段数増加や投機的実行といったアーキテクチャの進化によって、ムーアの法則のペースは維持されてきた。だが現在は、そのペースが鈍化している」と語った。

 同氏は、「マイクロプロセッサはもはや、かつてのようなレベルでの微細化は不可能だ。半導体物理学では『デナード則』をこれ以上継続することはできない」と明言した。

http://image.itmedia.co.jp/ee/articles/1706/05/mm170605_moore.jpg

続きはソースで

【翻訳:滝本麻貴、編集:EE Times Japan】
原文へのリンク http://www.eetimes.com/document.asp?doc_id=1331836&
ダウンロード


引用元: 【ムーアの法則】「ムーアの法則は終わった」、NVIDIAのCEOが言及 [無断転載禁止]©2ch.net

【ムーアの法則】「ムーアの法則は終わった」、NVIDIAのCEOが言及の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/05/18(木) 09:25:00.03 ID:CAP_USER
実験に使用した単電子デバイスの構造
http://pc.watch.impress.co.jp/img/pcw/docs/1060/103/01.gif

NTTは、トランジスタ内でランダムな方向に動く電子(熱ノイズ)を観測し、一方向に動く電子のみを選り分けて電流を流して電力を発生させる“マクスウェルの悪魔”の実験に成功したと発表した。

マクスウェルの悪魔は、物理学者のジェームズ・クラーク・マクスウェルが思考実験として提案したもので、「個々の電子の動きを観測して、一定の方向に動く電子のみを選び出すことができれば電流を生成できる」とした理論。

通常は、外部電源などを用いずに無秩序な熱ノイズから、電流という秩序性を持った動きを生み出すことは熱力学第二法則から不可能とされており、150年以上議論が続けられてきた。

ただ現在では、マクスウェルの悪魔が電子の動きを観測して、その情報を得るさいにエネルギーが必要であり、これが電流を流す電源としての役割を果たし、熱力学第二法則を満たすということがわかってきた。

これは1bitの情報を得るためには一定の量のエネルギーが必要であり、逆に1bitの情報を持っていることによって最大でその量のエネルギーを生み出せることを意味しており、情報とエネルギーを結びつけた情報熱力学へと発展している。

今回NTTは、ナノスケールのシリコントランジスタからなり、電子1個の精度で操作や検出が行なえる「単電子デバイス」を用いて、熱ノイズから電流を生成することに成功。

続きはソースで

http://pc.watch.impress.co.jp/img/pcw/docs/1060/103/02.gif
http://pc.watch.impress.co.jp/img/pcw/docs/1060/103/03.gif
http://pc.watch.impress.co.jp/docs/news/yajiuma/1060103.html
images (1)


引用元: 【情報熱力学】NTT、「マクスウェルの悪魔」を使った発電に成功 ©2ch.net

NTT、「マクスウェルの悪魔」を使った発電に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/24(月) 17:53:30.59 ID:CAP_USER
世界初、原子1層からなる半導体の性質を容易にコントロール ~万能性基幹分子の実現に一歩前進~|国立大学法人千葉大学のプレスリリース
http://prtimes.jp/main/html/rd/p/000000127.000015177.html


千葉大学の青木伸之准教授は,SUNYバッファロー大のJ.P. Bird教授,Rice大のR. Vajtai教授らと共同で,原子層物質(注1)の一種である二硫化モリブデン(MoS2)に,走査電子顕微鏡で電子線を照射するだけで,半導体として重要なバンドギャップ(注2)が大きくなる現象を世界で初めて発見しました。


•研究の背景 ~原子層物質への期待~

現在のコンピューターで使われているシリコンによる大規模集積回路(LSI)は,トランジスターの大きさをどんどん小さくして集積度をあげることで性能を伸ばしてきました。しかし,その方法は限界に近づいており,シリコンに代わってグラフェンや二硫化モリブデン(MoS2)といった原子層物質による,原子たった1層で作られたトランジスターが注目されています。一方,半導体としての性質を決める重要な特徴にバンドギャップがありますが,従来の材料ではその値は物質ごとに決まっていて,変えることはできませんでした。しかし,MoS2などの原子層物質では電子線の照射といった簡便な方法でバンドギャップを後から変えられることが示されました。この発見は,原子1層からなる様々なエレクトロニクスが実現できる可能性につながる成果といえます。

•成果の概要 ~半導体の性質をカスタマイズ~

千葉大学青木研究室では,光や電子線を照射することで,一つの物質から様々な異なる性質の材料を作り出すことができる「万能性基幹分子(注3)」の研究を進めてきました。その研究の中で,青木研の大学院生の松永正広らは,1層のMoS2単結晶で作られたトランジスターの中に,性質の異なる部分があることを発見しました。走査プローブ顕微鏡(注4)を複合的に用いて解析を進めていくと,その部分はバンドギャップが広くなっていて,その境界がトランジスターとしての動作を担っていることがわかりました。さらに検証を進め,その変化の原因は,試料の作製プロセスに使っていた電子線リソグラフィ(注5)で使用する電子線照射によるものであることを突き止めました。この研究により,原子層物質では,一般によく使われている走査型電子顕微鏡(SEM)といった簡易な装置で電子線を照射するだけで,バンドギャップを容易にコントロールできることがわかり,万能性基幹分子としての応用に一歩前進しました。

続きはソースで

ダウンロード
 

引用元: 【材料科学】世界初、原子1層からなる半導体の性質を容易にコントロール 万能性基幹分子の実現に一歩前進 [無断転載禁止]©2ch.net

世界初、原子1層からなる半導体の性質を容易にコントロール 万能性基幹分子の実現に一歩前進の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/14(金) 17:50:39.21 ID:CAP_USER
3次元集積化グラフェントランジスタの動作に成功-従... | プレスリリース | 東北大学 -TOHOKU UNIVERSITY-
http://www.tohoku.ac.jp/japanese/2016/10/press20161012-01.html
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20161012_01.jpg
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20161012_01web.pdf


東北大学大学院理学研究科・原子分子材料科学高等研究機構(WPI-AIMR)の田邉洋一助教、谷垣勝己教授と陳明偉教授は、高橋隆教授、阿尻雅文教授、伊藤良一准教授、菅原克明助教、北條大介助教、越野幹人准教授、東京大学理学系研究科の青木秀夫教授らと協力して3次元ナノ多孔質グラフェンを用いたグラフェントランジスタの3次元集積化に成功しました。
 
炭素原子一層からなる2次元シートであるグラフェンは優れたトランジスタ性能を示しますが、実用的な性能を得るには何千枚ものグラフェンを集積化し実用レベルまで性能を向上させる必要がありました。今回開発した厚みがあり多孔質を持つ3次元グラフェンをトランジスタに用いることで、集積してない2次元グラフェントランジスタの最大1000倍の電気容量を達成しました。
 
近年、携帯情報端末の普及や小型化・高性能化に伴い、省電力で軽量かつ高性能なデバイスの開発が求められています。

続きはソースで

ダウンロード (1)

引用元: 【電子工学/材料科学】3次元集積化グラフェントランジスタの動作に成功 従来比1000倍、軽量で省電力なデバイスに道 [無断転載禁止]©2ch.net

3次元集積化グラフェントランジスタの動作に成功 従来比1000倍、軽量で省電力なデバイスに道の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/08/19(金) 07:28:08.89 ID:CAP_USER9
◆2021年、ムーアの法則が崩れる?

「集積回路の実装密度は18カ月ごとに2倍になる」。
このムーアの法則は、1965年にインテル共同創業者のゴードン・ムーア氏が唱えた。

経験則だが、集積回路(半導体)の歴史はこの法則を、回路上のトランジスタやリード線といった素子を微細化することで実現してきた。
時間とともに技術は進歩し集積回路は高密度化し、それが結果として高性能化、高速化と低価格化を伴う。

18カ月で2倍、つまり3年ごとに4倍の容量のメモリチップが登場する。
15年で1024倍になり、たとえば同じ価格のメモリモジュールが1Mバイトから1Gバイトになる。

18カ月というサイクルは、厳密に言えば近年は崩れているが、驚異的なペースでの集積回路の高密度化は続いている。
集積回路が誕生したころから、我々はそれが当たり前だと思ってきた。

しかしこの法則は、2021年、つまりあと5年で崩れるという。
米国半導体工業会(SIA)が出した「2015年の半導体国際ロードマップ」と題するレポートで予測されている。

目に見える大きさから始まった集積回路は2016年現在、10nm(ナノメートル)プロセス、つまり素子1個の幅が1億分の1メートルという精密さで作られている。
これが2020年には半分の5nmプロセスになるという予測もあるが、物質を無限に分割することはできず、いずれ原子の大きさという壁にぶつかる。

トランジスタは、原子の格子構造によって電流(電子)を制御する。
5nm付近になると原子1個(およそ0.1nm)の大きさが影響を与えてくる。

回路を流れる電流、つまり移動する電子も、リード線の幅に対する抵抗や、物理学上の不確定性原理や、その他さまざまな理由から影響を受け、電子回路が実現できなくなる。
集積回路が原子や素粒子からできていることを考えれば、いつかは来る限界だとわかっていたが、ついにその限界が2021年に訪れるというわけだ。

では、どうなるのだろうか。
これまで何度も、ムーアの法則は物理的な限界を迎えたと考えられてきたが、そのたびに技術革新によって乗り越えられてきた。
だが今度の限界は、回避できそうにない。

ここで、発想を転換すれば解決できるのではないか。
回路を微細化しなくても、要するにシリコンウエハー上の同じ面積に、より多くの回路を詰め込めればいい。

具体的には、3次元方向に回路を展開する。積み重ねた薄膜上にそれぞれ回路を作り、相互に接続するなど、さまざまな3次元回路の製造法が模索されている。
発熱やコストの問題があるが、それも技術革新が解決するだろう。

こうして、2021年以後も見かけ上はムーアの法則が継続することになるかもしれない。
だが3次元回路にも、いずれ限界はやってくる。
そのときは、なにが待っているのだろうか――。

解説図:ムーアの法則の一例を示すグラフ(Wikipediaより)
http://amd.c.yimg.jp/amd/20160816-00000031-zdn_n-000-0-view.jpg

ITmedia ニュース 2016年8月16日(火)11時44分
http://headlines.yahoo.co.jp/hl?a=20160816-00000031-zdn_n-sci
ダウンロード (1)


引用元: 【IT】「集積回路の実装密度は18ヶ月ごとに2倍になる」──ムーアの法則が2021年に崩れる? [無断転載禁止]©2ch.net

「集積回路の実装密度は18ヶ月ごとに2倍になる」──ムーアの法則が2021年に崩れる?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/08/06(土) 21:39:13.32 ID:CAP_USER
両極性動作する有機モット転移トランジスタを実現 | 理化学研究所
http://www.riken.jp/pr/press/2016/20160805_3/
両極性動作する有機モット転移トランジスタを実現 | 60秒でわかるプレスリリース | 理化学研究所
http://www.riken.jp/pr/press/2016/20160805_3/digest/


トランジスタは半導体でできた電子部品の代表格であり、“信号を増幅すること”“回路のオン/オフを切り替えること”ができます。また、これまで、コンピュータの小型化に大きく貢献してきました。1940年代~1950年代、真空管で制御していた時代のコンピュータは部屋一つを覆い尽くすほど巨大なものでしたが、トランジスタの出現によってスマートフォンやウェアラブル端末のように、身に付けて持ち歩くことができるほど、超小型なコンピュータが実現しています。

一方、従来のトランジスタの小型化は、微細加工技術などの制約によって限界を迎えつつあります。そこで、次世代のトランジスタとして注目されているのが、モット絶縁体を利用する「モット転移トランジスタ」です。モット絶縁体とは、伝導電子を持つにも関わらず、それらが互いに反発し身動きがとれなくなり絶縁体になっている物質のことです。

モット転移トランジスタは、モット絶縁体の“電気を流す「電子液体」と、電気を流さない「電子固体」の間の相転移(電子相転移)”を利用してオン/オフを切り替えます。

続きはソースで

ダウンロード


引用元: 【電子工学/物性物理学】両極性動作する有機モット転移トランジスタを実現 集積化が容易な次世代トランジスタ開発に前進 [無断転載禁止]©2ch.net

両極性動作する有機モット転移トランジスタを実現 集積化が容易な次世代トランジスタ開発に前進の続きを読む

このページのトップヘ