理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

ルテニウム

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/09/03(木) 12:30:00.24 ID:???.net
共同発表:大容量の蓄電が可能な「リチウム空気電池」用電極材料の開発~ナノ多孔質グラフェンとルテニウム系触媒が鍵~
http://www.jst.go.jp/pr/announce/20150902-2/index.html

画像
http://www.jst.go.jp/pr/announce/20150902-2/icons/zu1.jpg
図1 リチウム空気電池とその予想されている反応メカニズム
(a) リチウム空気電池の動作原理。
(b) コイン型電池を用いた実物大のリチウム空気電池の写真。
(c) ナノ多孔質グラフェン電極上の化学反応の様子と表面で行われているとされる化学反応式。

http://www.jst.go.jp/pr/announce/20150902-2/icons/zu2.jpg
図2 RuO2ナノ粒子を挟んだナノ多孔質グラフェン電極
(a) RuO2ナノ粒子をグラフェンで挟んだナノ多孔質グラフェンを電極として用いた50サイクル充電前の走査型電子顕微鏡(SEM)像。円盤状の過酸化リチウムが生成していることが確認できた。
(b) RuO2ナノ粒子をグラフェンで挟んだナノ多孔質グラフェンを電極として用いた50サイクル充電後の走査型電子顕微鏡(SEM)像。
(c) 充電試験後のナノ多孔質グラフェン電極の透過型電子顕微鏡(TEM)像。100-300nmの孔サイズを持つ。2-3層のグラフェンに覆われた5nmのRuO2ナノ粒子が壊れずに存在している
ことが確認できた。
http://www.jst.go.jp/pr/announce/20150902-2/icons/zu3.gif

図3 RuO2ナノ粒子をグラフェンで挟んだ窒素ドープナノ多孔質グラフェン電極を用いたリチウム空気電池の充放電特性の試験結果
実験条件:1.0M(モル濃度)LiTFSI/TEGDME(リチウムビス(トリフルオロメタンスルホニル)イミド/トリエチレングリコールジメチルエーテル)、電流密度400mA/g、電気容量2000mAh/g。


ポイント
リチウムイオン電池の6倍以上の電気容量を持ち、100回以上繰返し使用が可能な「リチウム空気電池」の開発に成功した。
高性能な多孔質グラフェンと触媒により長寿命と大容量を実現。
1回の充電で500km以上の走行が可能な電気自動車の実現を視野に。


JST 戦略的創造研究推進事業の一環として、東北大学 原子分子材料科学高等研究機構(AIMR)の陳 明偉 教授らは、3次元構造を持つナノ多孔質グラフェン注1)による高性能なリチウム空気電池注2)を開発しました。

現在の電気自動車に使われているリチウムイオン電池の電気容量では、200km程度しか走行できず、走行距離を飛躍的に伸ばすために新しいタイプの大容量の蓄電池の開発が望まれています。

近年、注目されている新しい二次電池の中に「リチウム空気電池」があります。この電池はリチウムイオン電池とは異なり、正極にコバルト系やマンガン系の化合物を用いることなく、リチウム金属、電解液と空気だけで作動し、リチウムイオン電池の5~8倍の容量を実現できるとされています。

陳教授らはこのリチウム空気電池の正極に新たに開発した多孔質グラフェンを使用し、電極の単位重量あたり2000mAhの大きな電気エネルギーを持ち、かつ100回以上の繰返し充放電が可能なリチウム空気電池の開発に成功しました。正極に使用した多孔質グラフェンは、グラフェンの持つ電気伝導性に加えて、大きな空隙を持つことから、大容量の電極材料となりうることに着目したものです。現時点では、少量の貴金属を触媒に使用し、また、充電時の過電圧が大きいなどの課題は残りますが、実験結果を電気自動車の走行距離に換算すると充電1回あたりで500~600kmの走行に相当する結果が得られました。今後、さらなる改善を行うことで実用的な電気容量と寿命への到達が期待されます。本研究成果は、2015年9月1日(ドイツ時間)に「Advanced Materials」でオンライン公開されました。

続きはソースで

ダウンロード
 

引用元: 【触媒化学】大容量の蓄電が可能な「リチウム空気電池」用電極材料の開発 ナノ多孔質グラフェンとルテニウム系触媒が鍵 東北大

大容量の蓄電が可能な「リチウム空気電池」用電極材料の開発 ナノ多孔質グラフェンとルテニウム系触媒が鍵 東北大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: ◆CHURa/Os2M @ちゅら猫ρ ★ 2014/01/23(木) 15:19:30.98 ID:???0

★レアメタル“錬金術” 京大教授ら人工ロジウム作製、実用化へ

最も高価な金属の一つでレアメタルのロジウムとほぼ同じ性質の合金を性質の近い二つの金属から作製することに京都大理学研究科の北川宏教授のグループが成功し、22日発表した。
合金の価格はロジウムの10分の1から3分の1で済む。「現代の錬金術」と言え、材料開発の新技術として期待されるという。

ロジウムは、自動車の排ガスに含まれる窒素酸化物を除去する唯一の触媒として使われている。
ただ主な産出国は南アフリカで世界の年間生産量は約20トンしかない。現在の流通価格は1グラム当たり約4千円だが、リーマン・ショック以前の2007年ごろには3万円を超えたこともあった。

グループは、元素周期表でロジウムの両隣にあるパラジウムとルテニウムのイオンを含む水溶液のガスを高温の有機溶媒に噴出させる手法で、本来は混ざりにくい2種類の金属を合金にした。
合金は黒い粉末で、ロジウムとほぼ同じ性質を持つことを確認しており、「人工ロジウム」と呼べるという。

パラジウムの流通価格は1グラム当たり約2600円、ルテニウムは同約200円。
合金の材料費は、両金属の混合する割合で約400~1400円になる。

今回開発した人工ロジウムは、自動車や触媒メーカーと実用化に向けた交渉を既に始めているという。
北川教授は「周期表で両隣の金属を混ぜたらその間の金属ができるのではないかという単純な発想だった。
同じ手法で他の金属も作りたい」と話している。

今回の成果は、近く米化学会誌に掲載する予定。

http://kyoto-np.jp/education/article/20140123000018
4



レアメタル“錬金術” 京大教授ら人工ロジウム作製、実用化への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: ケンシロウとユリア百式φ ★ 2014/01/15(水) 18:26:51.33 ID:???

東京工業大学理工学研究科の石谷治教授と豊田中央研究所の稲垣伸二シニアフェローの共同研究チームが、2段階のエネルギー移動で光を効率よく捕集する分子システムを初めて開発した。
太陽エネルギーを高効率で化学エネルギーに変換する植物の光合成に匹敵する人工光合成の実現につながる成果。Chemical Science に論文が掲載される。

光を吸収する有機分子を多量かつ規則正しく配置した壁で構成される多孔質材料のメソポーラス有機シリカ(PMO)に金属錯体を導入することにより、400個を超える有機分子が吸収した光エネルギーを集めた。
まず5つの金属錯体が集め、最終的に一つの分子に集約することができた。

植物の光合成では、クロロフィルなど比較的単純な分子の集合体(LH2と呼ばれる光アンテナ)を葉の表面に幅広く配置することで、大面積で太陽光を捕集している。
これをエネルギー移動により、まず単位面積当たり数の少ないLH1(クロロフィルの集合体)に集め、その後、その近傍に配置された構造が複雑な反応中心へと移動させる2段階での光エネルギー集約ステムを構築することで、太陽光の効率の良い利用を達成している。

これまで、植物を真似た光捕集システムの研究は行われてきたが、多量の単純な有機分子から2段階で光を集約するシステムの報告はなかった。

PMOの開発は、豊田中研の稲垣グループが行った。東工大の石谷研究室は、LH1と反応中心のモデルとしての多核金属錯体(Ru-Re5)を開発した。
5つのレニウム錯体が吸った光が同じ分子内の中心に配置された一つのルテニウム錯体に集約される1段階光捕集系であるという。

今回、Ru-Re5をPMOの空孔に導入・固定した。
この複合系は、光合成と同様に2段階で光エネルギーを集約することができる。
400個を超えるPMOの有機分子(植物のLH2に対応)が捕集した光エネルギーは、まずRu-Re5の5つのレニウム(LH1に対応)錯体が集め、最終的に一つのルテニウム錯体(反応中心に対応)に集約される。

今回開発した光捕集システムを、二酸化炭素の還元資源化や水からの水素発生を駆動する光触媒と融合することで、太陽エネルギーを効率よく吸収し、化学エネルギーに変換する人工光合成系の開発につながる。
また、このシステムの導入により、高価で稀少な人工光合成用の光触媒の使用量を大幅に低減できるという。


【画像】
http://111.89.136.85/app-def/S-102/wp/wp-content/uploads/2014/01/n000122.jpg
(左)今回開発した光捕集・集約システム:多くの有機基(ビフェリル)が導入された壁で構成された多孔質材料に、直鎖状の5核レニウム錯体の中心にルテニウム錯体が結合した分子が固定されている。
(右)400個を越える有機分子が吸収した光エネルギーを、まず5つのレニウム錯体が集め、最終的に一つのルテニウム錯体に集約する (出所:東京工業大学)


ソース:SJNニュース(2014年1月15日)
http://sustainablejapan.net/?p=4765
関連リンク:東工大のプレスリリース
http://www.titech.ac.jp/news/2014/024699.html
関連リンク:Chemical Scienceに掲載された論文要旨
「Efficient light harvesting via sequential two-step energy accumulation
using a Ru?Re5 multinuclear complex incorporated into periodic mesoporous organosilica」(英文)
http://pubs.rsc.org/en/Content/ArticleLanding/2014/SC/c3sc51959g#!divAbstract
8



植物の光合成に匹敵する人工光合成に目処…2段階のエネルギー移動で光を効率よく捕集する分子システムを初めて開発/東工大などの続きを読む

このページのトップヘ