理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

二次電池

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/01/30(火) 18:31:54.78 ID:CAP_USER
米カリフォルニア大学サンディエゴ校は25日(米国時間)、寿命を迎えたリチウムイオン電池の新たなリサイクル手法を開発したことを発表した。

 リチウムイオン電池は、スマートフォンやノートPCなどで利用されている、リチウムイオンの陽極と陰極間の移動を利用した二次電池。
リチウムやコバルトなどの希少金属がカソード(陰極)、グラファイトなどがアノード(陽極)の材料として使われている。

 リチウムイオン電池が消耗すると、カソード材料のリチウム原子の一部を失ってしまい、カソードの原子構造も変化することで、イオンを出し入れする能力が低下する。

 開発された新たなリサイクル手法は、カソード材料(リチウムコバルト酸化物)を回収したあと、元の状態に復元するという。対象となるカソードは、ほとんどの電気自動車に使用されている、ニッケルやマンガン、コバルトを含む「NMC」となる。

 まず、使用済みリチウムイオン電池からカソード粒子を回収し、リチウム塩を含む高温のアルカリ性溶液中でカソード粒子を加圧し、800℃まで加熱する。

 その後、時間をかけてゆっくりと冷却する焼きなまし(アニール)処理を行なうと、またカソードが電池材料として利用できるという。
なお、前述のアルカリ性溶液は、カソードの復元処理に使いまわせる。

 研究者らが、この再生した粒子から新しいカソードを作製し、実験を行なったところ、オリジナルと同じエネルギー貯蔵容量、充電時間、寿命を持つことが確認されたという。

 Chen氏によれば、このリサイクルプロセスは、新品のカソード粒子を作るのと本質的に同じものであり、使用後の材料も、同じ処理を行なうだけで元に戻せることを示しているとする。

続きはソースで

画像:リチウムイオン電池の使用済みカソード粒子 David Baillot/米カリフォルニア大学サンディエゴ校
https://pc.watch.impress.co.jp/img/pcw/docs/1103/762/01_l.jpg

画像:カリフォルニア大学サンディエゴ校のYang Shi氏(左)とZheng Chen教授(右)
https://pc.watch.impress.co.jp/img/pcw/docs/1103/762/02_l.jpg

PC Watch
https://pc.watch.impress.co.jp/docs/news/1103762.html
ダウンロード


引用元: 【エネルギー】リチウムイオン電池の寿命を復活させる新再生手法[18/01/30]

【エネルギー】リチウムイオン電池の寿命を復活させる新再生手法の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/07/31(月) 23:13:21.29 ID:CAP_USER
リチウム空気電池のエネルギー効率と寿命を大幅に改善する電解液を開発
2017.07.31 NEW

国立研究開発法人物質・材料研究機構

NIMSの研究チームは、リチウム空気電池のエネルギー効率と寿命を大幅に改善する新しい電解液を開発しました。


概要

1.国立研究開発法人物質・材料研究機構 エネルギー・環境材料研究拠点 ナノ材料科学環境拠点 リチウム空気電池特別推進チームの久保佳実チームリーダー、辛星 (XIN Xing) ポスドク研究員、伊藤仁彦主幹研究員らの研究チームは、リチウム空気電池のエネルギー効率と寿命を大幅に改善する新しい電解液を開発しました。

2.蓄電池 (二次電池) は、電気自動車用電源や、太陽電池で発電された電気をためる家庭用電源として、今後急速に需要が拡大することが予測されます。二次電池の中でも、リチウム空気電池は最高の理論エネルギー密度を有する「究極の二次電池」と言われています。現状、二次電池として広く使用されているリチウムイオン電池は、蓄電容量に相当するエネルギー密度がほぼ限界に達しており、リチウム空気電池によって、蓄電容量の劇的な向上と大幅なコストダウンが期待できます。しかしながら、リチウム空気電池は、放電電圧に比べて充電電圧が高いためエネルギー効率が低く、またリチウム金属負極の寿命が短いという大きな課題がありました。

3.今回、本研究チームでは、リチウム空気電池のエネルギー効率と寿命を大幅に改善する新しい電解液を開発しました。この電解液により、充電時に正極にかかる過剰な電圧 (過電圧) が、従来の1.6 V以上から半分以下の約0.6 Vとなり、エネルギー効率が60%程度から77%まで大きく改善しました。さらに、寿命低下の一因とされていたリチウム金属の樹枝状の析出も防止することで、従来20回以下であった充放電サイクルの寿命が50回以上まで大幅に向上しました。

続きはソースで

▽引用元:国立研究開発法人物質・材料研究機構 2017.07.31
http://www.nims.go.jp/news/press/2017/07/201707311.html

サイクル試験後のリチウム金属負極の断面観察。(a) 従来電解液、(b) 新電解液
http://www.nims.go.jp/news/press/2017/07/hdfqf1000008zg3g-img/img_201707311.jpg
ダウンロード


引用元: 【エネルギー】リチウム空気電池のエネルギー効率と寿命を大幅に改善する電解液を開発/物質・材料研究機構©2ch.net

リチウム空気電池のエネルギー効率と寿命を大幅に改善する電解液を開発/物質・材料研究機構の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/03/22(火) 17:27:20.99 ID:CAP_USER.net
平成28年3月22日
東京工業大学
トヨタ自動車株式会社
トヨタモーターヨーロッパ
高エネルギー加速器研究機構
J-PARCセンター
茨城県

【要点】
○世界最高のリチウムイオン伝導率を示す超イオン伝導体を発見
○超イオン伝導体を利用した全固体セラミックス電池が最高の出力特性を達成
○高エネルギーと高出力で、次世代蓄電デバイスの最有力候補に。

 東京工業大学大学院総合理工学研究科の菅野了次教授、トヨタ自動車の加藤祐樹博士、高エネルギー加速器研究機構の米村雅雄特別准教授らの研究グループは、リチウムイオン二次電池の3倍以上の出力特性をもつ全固体型セラミックス電池(用語1)の開発に成功した。
従来のリチウムイオン伝導体の2倍という過去最高のリチウムイオン伝導率をもつ超イオン伝導体(用語2)を発見し、蓄電池の電解質に応用して実現した。


 開発した全固体電池は数分でフル充電できるなど高い入出力電流を達成し、蓄電池(大容量に特徴)とキャパシター(高出力に特徴)の利点を併せ持つ優れた蓄電デバイスであることを確認した。
次世代自動車やスマートグリッドの成否の鍵を握るデバイスとして熾烈な開発競争が繰り広げられている蓄電デバイス(用語3)のなかで、最も有力なデバイスといえる。

 同研究グループは超イオン伝導体の結晶構造を、大型放射光施設SPring-8のBL02B2を利用したX線構造解析、および大強度陽子加速器施設J-PARC(用語4)に茨城県が設置した粉末中性子回折装置「茨城県材料構造解析装置(iMATERIA:BL20)」で解明し、三次元骨格構造中の超イオン伝導経路(用語5)を明らかにした。
さらに電極反応機構を、電解液を用いるリチウムイオン二次電池と比較し、高出力特性が全固体デバイスの本質的な利点であることを解明した。

 研究成果は3月21日(現地時間)発行の英国の科学誌「ネイチャーエナジー(Nature Energy)」電子版に掲載される。
また、成果の一部は国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の助成事業にて得られたものである。

続きはソースで

ダウンロード


ソース元:spring8
http://www.spring8.or.jp/ja/news_publications/press_release/2016/160322/

引用元: 【材料科学/電気化学】超イオン伝導体を発見し全固体セラミックス電池を開発 高出力・大容量で次世代蓄電デバイスの最有力候補に

超イオン伝導体を発見し全固体セラミックス電池を開発 高出力・大容量で次世代蓄電デバイスの最有力候補にの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/12/05(土) 23:57:39.40 ID:CAP_USER*.net
性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学
http://www.itmedia.co.jp/smartjapan/articles/1512/04/news039.html

ダウンロード


 山口大学 大学院理工学研究科の研究チームは、既存のリチウムイオン二次電池の代替として期待される高容量なマグネシウム二次電池の開発に成功したと発表した。

 二次電池はエネルギーを発生させる燃料の役割を果たす正極材料(プラス極)と負極材(マイナス極)、さらに電極間エネルギーの媒体となる電解質の3つの要素で構成されている。

現在、一般的に使われている携帯電話などの二次電池には、主に正極材料にコバルト系化合物、負極材料に人造黒鉛(炭)、電解質にはリチウムイオンを使用した有機電解液が使用されている。
しかし、コバルトやリチウムは希少金属であるため、製造コストが高くなるなど、さらなる普及に向けた課題も残っていた。

続きはソースで 

引用元: 【社会】性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学

性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/06/19(金) 12:21:18.29 ID:???.net
蓄電・発電機器:存在が不明だった二次電池の“中間状態”、高速充電に効果があることが明らかに - スマートジャパン
http://www.itmedia.co.jp/smartjapan/articles/1506/17/news038.html
東京大学工学部 電池の充電を速くする"中間状態"を解明:化学システム工学専攻 山田淳夫教授
http://www.t.u-tokyo.ac.jp/epage/release/2015/20150616003.html
http://www.t.u-tokyo.ac.jp/pdf/2015/20150616_yamada.pdf

画像
http://image.itmedia.co.jp/smartjapan/articles/1506/17/rk_150616_tokyo01.jpg
図1 今回の研究で明らかになった中間状態の構造 出典:東京大学

http://www.t.u-tokyo.ac.jp/epage/release/20150616_yamada.jpg


東京大学の研究グループは、電池の充電速度の高速化に関係するといわれていた、電気をためる物質の“中間状態”を人工的に作り出すことに成功。充電速度を早くするためには、充電時に中間状態を発現させることが重要な方向性であることを明らかにした。


 電気を蓄え必要に応じて取り出すことのできる二次電池は、スマートフォンや電気自動車など身の周りの生活用品から、再生可能エネルギーの出力変動への応用など、あらゆる場面に用途が広がっている。現在の主流はリチウムイオン電池だ。しかしどんな用途であれ、電池の充電が現在より速やかに行えるようになれば利便性の向上が見込める。東京大学の研究グループは2015年6月16日、高速充電が可能な二次電池の開発につながる研究成果を発表した。

 これまでの研究では、電気を蓄える物質には充電状態でも放電状態でもない“中間状態”が存在し、これが充電反応中に現れることで充電を素早く行うことができるという学説が複数発表されてきた。しかしその内容は中間状態が本当に存在するのか、存在したとしてもどのような場合に現れるのかという議論にとどまっており、中間状態の具体的な性質については明らかにされていなかった。

 今回、東京大学工学系研究科の山田淳夫教授と西村真一特任研究員らの研究グループは、電気を蓄える物質の元素の構成比や熱処理の条件を最適化することで、室温で長時間安定的に存在する中間状態が人工的に得られることを発見した。

続きはソースで

ダウンロード



引用元: 【電気化学】存在が不明だった二次電池の“中間状態”、高速充電に効果があることが明らかに 東大

存在が不明だった二次電池の“中間状態”、高速充電に効果があることが明らかに 東大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/12/19(金) 22:19:11.60 ID:???.net
掲載日:2014/12/19

新しいイオン液体リチウム二次電池の地球周回軌道上での充放電試験に、関西大学化学生命工学部の石川正司(いしかわ まさし)教授と山縣雅紀(やまがた まさき)准教授がイオン液体電池として初めて成功した。このイオン液体リチウム二次電池は、石川教授と山縣准教授が2006年、独自に設計と開発を行った。通常の電解液の代わりに「イオン液体」を用いており、揮発・引火成分を一切使っていない。
軽量で薄く、コンパクトな新型蓄電池で、宇宙用や極限環境用として期待が集まっている。関西大学が12月17日発表した。

このリチウム電池は、東京大学大学院工学系研究科の中須賀真一(なかすか しんいち)教授らが6月にロシアのヤスネ基地から打ち上げて地球周回軌道に乗った超小型衛星「ほどよし3号」に搭載された。地球からの指令で8月に、イオン液体電池として軌道上での充放電に初めて5分間ほど成功し、10月には1時間の充放電試験にも成功した。試験では、衛星の太陽電池の電気で充電し、衛星内部の発熱蛍光体によるヒーター用に放電した。

この電池は、電解系の蓄電池に含まれている溶媒がなく、塩と同じイオン液体を電解液としているため、揮発や引火する心配はない。
柔軟で薄いアルミのラミネート外装のみで、超真空の宇宙環境でも使えるようにした。厚さは3~4ミリで、衛星の狭い隙間に置くことができる。
実験データからは、頑丈な外装なしで、長期宇宙滞在にもかかわらず、劣化がほとんどなく、地上に設置した同型の電池と全く変わらない性能を発揮した。

続きはソースで

<画像>
写真. 石川正司関西大学教授らが開発し、ほどよし3号機に搭載されたたイオン液体リチウム二次電池(写真上)。
簡素なラミネート外装のみにもかかわらず、超高真空下で作動が可能(写真下)。(提供:関西大学)
http://news.mynavi.jp/news/2014/12/19/057/images/001l.jpg

<参照>
「イオン液体リチウム二次電池」の宇宙実験へ|トピックス|大学紹介|関西大学
http://www.kansai-u.ac.jp/mt/archives/2014/06/post_985.html

<記事掲載元>
http://news.mynavi.jp/news/2014/12/19/057/

引用元: 【技術】衛星でイオン液体電池の充放電に成功

衛星でイオン液体電池の充放電に成功の続きを読む

このページのトップヘ