理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

定数

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/10/06(土) 23:45:35.06 ID:CAP_USER
「今世紀最大の難問の一つ」とされ、約160年にわたって解かれていない数学の難問「リーマン予想」を、英国の数学者が「証明した」と発表し、数学ファンの中で「ビッグニュース」「本当か?」と話題になっている。

■リーマン予想とは

 ドイツの数学者リーマンが1859年に発表した数学の未解決問題。2、3、5、7……と無限に続く素数が、どのように分布しているか、という素数分布の謎の解明につながるとされる。「数の原子」とも呼ばれる素数の本質に迫れるため、今世紀最大の難問の一つに挙げられる。

■「おまけで解けた」

 発表したのは、英エディンバラ大名誉教授のマイケル・アティヤ氏(89)。「数学のノーベル賞」と言われるフィールズ賞やアーベル賞を受賞し、英王立協会会長も務めたことのある、世界で最も有名な数学者の一人だ。

 アティヤ氏の発表内容については9月20日、4日後にドイツで開かれる数学フォーラムでの講演に先立ち、主催者側がツイッターで「彼はリーマン予想の証明を発表するか? その通り、講演概要にそう書いてある」と予告。SNS上では「マジ? アティヤなら解きかねん」「ほんまかいな」と講演前から騒がれていた。

 講演でアティヤ氏は、ある物理定数を数学的に導出する過程で、リーマン予想を背理法を使って証明できると主張。「リーマン予想(の証明)はおまけ」とも語った。講演はユーチューブで生配信され、世界中で視聴された。講演が終わると会場からは拍手がわき起こった。5ページからなる証明論文も公開された。

 今回公表された論文以外に、全ての根拠を示した論文を、英王立協会が発行する科学誌に投稿したという。論文は公開されていない。証明が認められるのは、論文が複数の専門家による厳密な検証を受けてからになる。

続きはソースで

【関連記事】
【数学】人類史上最大の難問の一つ 「リーマン予想」 ついに解明か / 名乗り出たのはフィールズ賞受賞数学者マイケル・アティヤ氏

https://www.asahicom.jp/articles/images/AS20181005003697_commL.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASL9T42NNL9TULBJ004.html
ダウンロード (4)


引用元: 【数学】〈続報〉超難問「リーマン予想」証明? 英数学者マイケル・アティヤ氏に懐疑的な声も[10/06]

【数学】〈続報〉超難問「リーマン予想」証明? 英数学者マイケル・アティヤ氏に懐疑的な声もの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/09/27(木) 11:44:30.74 ID:CAP_USER
東京大学 国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)ならびに、東京大学、国立天文台、米国プリンストン大学、台湾中央研究院天文及天文物理研究所(ASIAA)などで構成される国際研究チームは、すばる望遠鏡に搭載された超広視野主焦点カメラ HSC(ハイパー・シュプリーム・カム)の観測データから、ダークマターがどこまで銀河などの宇宙の構造を作ったかを決める宇宙の基本定数を、世界最高級の精度で測定することに成功したと発表した。

同成果は、Kavli IPMUの日影千秋 特任助教、同 大栗真宗 助教、同 高田昌広 教授(主任研究員)、国立天文台の浜名崇 助教、インド天文学天体物理学大学連携センターのSurhud More 准教授(Kavli IPMU客員科学研究員)、カーネギーメロン大学のRachel Mandelbaum教授らによるもの。研究成果は9月26日付でプレプリントサーバ「arXiv」に掲載され、今後、「日本天文学会欧文研究報告(Publication of Astronomical Society of Japan:PASJ)」に投稿され、専門家による査読が行われる予定。

宇宙のダークマターの空間分布を高精度で復元
宇宙の全エネルギーの約95%を占めるといわれるダーク成分。それを構成するダークマターやダークエネルギーの正体は依然としてよく分かっておらず、その解明に向けて、世界中でさまざまな観測が行なわれている。

今回、研究チームがすばる望遠鏡を用いて行なった研究もそうしたものの1つで、重力レンズ効果によって生じる観測対象の銀河の歪みの効果を測定することで、宇宙のダークマターの空間分布の解明を目的として行なわれた。

具体的には、2016年4月までにHSCで観測された、プロジェクト全体の約11%に相当するデータの解析を実施。研究チームが、「宇宙の国勢調査」と称したこの作業では、銀河の大小に関わらず、手前のダークマターにより、必ず重力レンズの影響を受けている(弱い重力レンズ歪み効果)ということを踏まえ、小さな銀河の形状も定量化するなど、約2年間にわたって、宇宙の膨張なども考慮しつつ、約1000万個以上の銀河の形状をカタログ化。この結果、高精度な3次元のダークマター地図を作成することに成功したほか、この地図の断面を宇宙の進化と照らし合わせることで、各時代におけるダークマターの分布や量などが判明したという。

続きはソースで

https://news.mynavi.jp/article/20180926-697651/images/006.jpg

■HSCのデータを元にした銀河カタログから、重力レンズ効果を測定し、各年代ごとに復元を行ったダークマターの地図。青色の濃淡がダークマターの分布を表している
https://news.mynavi.jp/article/20180926-697651/images/001.jpg

■動画
HSCmassmap video https://youtu.be/c93XJ0ae6ME


https://news.mynavi.jp/article/20180926-697651/images/002.jpg
https://news.mynavi.jp/article/20180926-697651/images/004.jpg

マイナビニュース
https://news.mynavi.jp/article/20180926-697651/
images

引用元: 【宇宙】宇宙は今後少なくとも1400億年は生きながらえる - Kavli IPMUなど[09/26]

宇宙は今後少なくとも1400億年は生きながらえる - Kavli IPMUなどの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/10/24(火) 16:59:19.59 ID:CAP_USER9
画像出典: Stoughton/NIST
https://pc.watch.impress.co.jp/img/pcw/docs/1087/748/01_l.jpg 

アメリカ国立標準技術研究所(NIST)は22日(米国時間)、自然界の4つの基本的な定数について、更新値が決定されたことを発表した。

 変更される定数は国際単位系(SI)の定義に関するもので、新SIは2018年に国際機関による採択予定で、承認されれば、地球上のあらゆる場所で正確な測定が可能になるとしている。

 変更される定数はボルツマン定数(状態数とエントロピーを関係付ける定数)、プランク定数(光子のもつエネルギーと振動数の比例関係をあらわす比例定数)、電気素量、アボガドロ定数(物質1モルを規定する量)の4つ。

 SI基本単位とは、秒(s、時間)、メートル(m、長さ)、キログラム(kg、質量)、ケルビン(K、温度)、アンペア(A、電流)、カンデラ(cd、光度)、モル(mol、物質量)の7つの基本単位を指す。

 現在、ケルビン(K、熱力学温度の単位)は水の三重点の熱力学温度の273.16分の1を1Kとして規定されているが、新SIではボルツマン定数を絶対値として規定される。

 電流を表すアンペア(A)も、キログラムとメートルの定義に依存する現行の定義から、電気素量を基に規定される。アボガドロ定数の固定は、物質量の単位であるモル(mol)の定義を更新する。

続きはソースで

配信2017年10月24日 13:35
PC Watch
https://pc.watch.impress.co.jp/docs/news/yajiuma/1087748.html
ダウンロード


引用元: 【NIST】4つの自然界の基本定数が更新される ボルツマン定数・プランク定数・電気素量・アボガドロ定数

【NIST】4つの自然界の基本定数が更新される ボルツマン定数・プランク定数・電気素量・アボガドロ定数の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/05/12(木) 17:59:57.36 ID:CAP_USER
【プレスリリース】130億光年彼方での一般相対性理論の検証~アインシュタインは間違っていなかった?~ - 日本の研究.com
https://research-er.jp/articles/view/46270


発表者:

奧村哲平 (おくむら・てっぺい)
 東京大学国際高等研究所カブリ数物連携宇宙研究機構 特任研究員
日影千秋 (ひかげ・ちあき)
 東京大学国際高等研究所カブリ数物連携宇宙研究機構 特任助教


発表のポイント:

•宇宙の加速膨張の謎に迫るため、すばる望遠鏡を用いて遠方宇宙(130 億光年)にある約3000個の銀河の距離を測定し、立体地図を作成した。
•銀河の運動を詳しく調べることで、宇宙の大規模構造が形成される速度を、このような遠方(過去)の宇宙において世界で初めて測定し、一般相対性理論が重力理論として正しいかを検証した。
•得られた測定結果は、一般相対性理論の予言値と一致していた。宇宙の加速膨張は、アインシュタインが導入した「宇宙定数」によって説明できるとする説をさらに支持する結果となった。


発表概要:

東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)の奧村哲平特任研究員と日影千秋特任助教、東京大学大学院理学系研究科天文学専攻の戸谷友則 (とたに・とものり) 教授を中心に、東北大学大学院理学研究科天文学専攻の秋山正幸(あきやま・まさゆき)准教授及び京都大学大学院理学研究科物理学・宇宙物理学専攻の岩室史英 (いわむろ・ふみひで) 准教授、太田耕司 (おおた・こうじ) 教授らから成る国際研究グループは、すばる望遠鏡を用いたFastSound (ファストサウンド) という銀河サーベイにより、平均して130 億光年もの遠距離にある約3000個もの銀河までの距離に基づく宇宙3次元地図を完成させました。

さらに地図中での銀河の運動を詳しく調べ、重力によって大規模構造が成長していく速度の測定に初めて成功しました。そして、そのような遠方宇宙でも構造形成速度がアインシュタインの一般相対性理論の予想と一致することを確かめました。今回の結果は、一般相対性理論は正しく、アインシュタインが導入した宇宙定数により宇宙の加速膨張が起きているという説をさらに支持するものです。

本研究成果は日本天文学会の発行する Publications of the Astronomical Society of Japan (欧文研究報告) のオンライン版に2016 年4月26日付で掲載されました。

続きはソースで

ダウンロード (2)
 

引用元: 【相対性理論】130億光年彼方での一般相対性理論の検証 アインシュタインは間違っていなかった? [無断転載禁止]©2ch.net

【相対性理論】130億光年彼方での一般相対性理論の検証 アインシュタインは間違っていなかった?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: Cancer ★@\(^o^)/ 2014/06/20(金) 23:28:55.44 ID:???.net

量子的手法が万有引力定数に迫る
冷たいルビジウム原子はニュートンの大文字Gを測定する新しいアプローチをもたらした。
Ron Cowen, 18 June 2014

あらゆる2つの物体間に働く引力は物体の質量に比例し(距離に反比例し)、比例定数はGと呼ばれる――しかしこの基礎定数の測定は互いに食い違った結果を与えてきた。
http://www.nature.com/polopoly_fs/7.17990.1403111284!/image/WEB_ANJN6D.jpg_gen/derivatives/landscape_630/WEB_ANJN6D.jpg

物理学者たちは物質の量子的性質を使って万有引力定数の精度の高い値を得た。いわゆる「大文字G」は惑星からリンゴまで、全ての物体が互いに引力で引き合う振る舞いを記述するアイザック・ニュートンの法則に出てくる定数だ。この技術はまだ改良が必要だが、物理学者たちはいずれ従来の手法の精度を超えると考えている。そして長年物理学者たちを悩ませてきた測定による食い違いを解決することが期待されている。

今日ネイチャー誌に記述された研究の中で、研究者たちはルビジウム原子と516キログラムのタングステン柱アレイとのあいだの非常に小さな引力を測定した。この測定の不確かさは150百万分率(0.015%)だ。この数字は2つの巨視的質量の相互引力を計った、従来の手法によるGの測定よりわずかに大きいだけだ。

最新の測定は「素晴らしい実験成果でありGの知識への重用な貢献だ」とカリフォルニア大学バークリー校の物理学者、ホルガー・ミュラー(Holger Muller)は話した(彼は研究に関与していない)。

◆定数問題

この技術は原子などの物質粒子が波として振る舞う性質を利用していて、長年物理学者たちを挫折させてきた問題に新しい知見をもたらした。従来の手法は回転する天秤に取り付けられたおもりに働く引力によるトルクを測定していた。1798年にイギリスの科学者、ヘンリー・キャヴェンディッシュが最初に行った実験だ。しかしキャヴェンディッシュの装置を使った約300回の現代の実験は精度が上がってきているにもかかわらず、異なった実験室が僅かに異なる値のGを出していて、近年はその食い違いが小さくなるどころか大きくなってきている。

新しい測定は伝統的技術で得られた値のほとんどより低い。
http://www.nature.com/polopoly_fs/7.17992.1403111979!/image/WEB_schlamminger.jpg_gen/derivatives/fullsize/WEB_schlamminger.jpg

研究者たちはこれまでの測定に不一致を起こした誤差の原因を特定できていない。最新の測定の装置にはトルク手法と同じ誤差はでないと考えられる。そして精度を高めればGの真の値の決定に役立つだろう、と研究の共著者でフィレンツェ大学(イタリア)のグリエルモ・ティーノ(Guglielmo Tino)は話した。

ティーノと彼の共同研究者たちは、物質の波状の性質を使った装置である、原子干渉計を使って万有引力加速度を精密に測定した。スタンフォード大学(カリフォルニア州)のマーク・カセヴィチ(Mark Kasevich)が率いる別のチームが、そのような干渉計がGの測定に使えることを2007年に初めて実証していた。ティーノのチームは干渉計技術でのGの「測定精度を10倍以上に向上させた」とカセヴィチは話した。
>>2以降につづく

ソース:Nature News(18 June 2014)
Quantum method closes in on gravitational constant
http://www.nature.com/news/quantum-method-closes-in-on-gravitational-constant-1.15427

原論文:Nature
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino.
Precision measurement of the Newtonian gravitational constant using cold atoms.
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13433.html

プレスリリース:Universita degli studi di Firenze(18-Giu-2014)
Fisica, misurata con elevata precisione la costante di Newton
http://www.unifi.it/notiziario/cmpro-v-p-379.html


引用元: 【物理学】量子力学の手法で万有引力定数に迫る


量子力学で万有引力定数に迫るの続きを読む

このページのトップヘ