理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

省エネ

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/01/14(木) 21:59:13.49 ID:CAP_USER.net
【プレスリリース】省エネで生産性の高い革新的炭素繊維製造プロセスを開発 ―製造エネルギーとCO2排出量を半減、生産性を10倍向上― - 日本の研究.com


 NEDOは、東京大学、産業技術総合研究所、東レ(株)、帝人(株)、東邦テナックス(株)、三菱レイヨン(株)とともに、従来の製造プロセスに比べて、製造エネルギーとCO2排出量を半減させ、生産性を10倍に向上できる革新的炭素繊維製造プロセスの基盤技術を確立しました。
この技術により、低コストで大量に炭素繊維を製造することができます。

 今後、この量産プロセスの工業化を目指すとともに、複合材料用繊維として革新的な性能を発現する高性能かつ多機能な炭素繊維の創出を目指します。


概要

 炭素繊維は、熱的・化学的に極めて安定で軽量かつ力学的特性に優れる素材であり、日本のPAN※1系炭素繊維メーカー3社が、世界シェアの約65%を生産しているなど、日本が世界をリードしている素材です。
また炭素繊維は、航空機のみならず自動車への適用が期待されるほか、環境・エネルギー分野、土木建築分野等、様々な分野へ適用が拡大しています。
今後、炭素繊維の自動車等への本格的導入のためには、炭素繊維の生産性を飛躍的に高め、製造時における消費エネルギーならびに二酸化炭素排出量を大幅に低減する必要があります。

 今般、NEDOは、「革新的新構造材料等研究開発」※2において、東京大学などとともに、製造エネルギーと二酸化炭素排出量を半減させ、生産性を10倍に向上できる革新的炭素繊維製造プロセスの基盤技術を確立しました。

 本プロジェクトは、東京大学が中心となって、産業技術総合研究所および東レ(株)、帝人(株)、東邦テナックス(株)、三菱レイヨン(株)が参加。
現行方式の生産性の足かせとなっている耐炎化※3工程を不要とする新規前駆体化合物※4を開発するとともに、マイクロ波を用いた高効率の炭素化技術、ならびにプラズマを用いた表面処理技術を開発し、低コストで、高性能の炭素繊維を高効率で生産できる省エネ製造プロセスの基盤技術を確立しました。

 今後は、この量産プロセスの工業化を目指すとともに、この新しいプロセスから生み出される炭素繊維のポテンシャルを拡大して、複合材料用繊維として革新的な性能を発現する高性能かつ多機能な炭素繊維の創出を目指します。

 なお、本成果は、2016年1月27日(水)~29日(金)の間、東京ビッグサイトで開催される「nano tech 2016 第15回 国際ナノテクノロジー総合展・技術会議」のNEDOブースにおいて展示します。

続きはソースで

ダウンロード (3)
 

引用元: 【技術】省エネで生産性の高い革新的炭素繊維製造プロセスを開発 製造エネルギーとCO2排出量を半減、生産性を10倍向上

省エネで生産性の高い革新的炭素繊維製造プロセスを開発 製造エネルギーとCO2排出量を半減、生産性を10倍向上の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/12/27(日) 16:53:35.67 ID:CAP_USER.net
光接続のプロセッサー、サーバーの超高速化・省エネ化に道を開くか (ニュースイッチ) - Yahoo!ニュース
http://headlines.yahoo.co.jp/hl?a=20151227-00010001-newswitch-sctch

ダウンロード (3)


現在の半導体製造プロセスそのまま活用、MIT・UCバークレーなどが試作

 日進月歩で高速化するコンピューターやスマートフォン。だが、それらの性能を大幅に向上させるのに、大きな壁が立ちはだかっている。マイクロプロセッサーとのデータのやり取りに使われる銅配線の伝送速度に限界があるためだ。こうした難題を解決するため、半導体の電子回路と、データ伝送を光で行う光I/O(入出力)部品とを一つのチップに搭載した初めてのマイクロプロセッサーが、米国の大学で試作された。

 開発にかかわったのはマサチューセッツ工科大学(MIT)、カリフォルニア大学バークレー校(UCバークレー)、コロラド大学ボールダー校の研究者ら。しかも、このチップは、現在のCMOS(相補型酸化金属半導体)の半導体製造プロセスをそのまま活用して製造できることから、商業化の面でも大きな優位性を持つ。将来、データセンターの高速化、省電力化などに貢献するものと期待されている。

 これまでにも、チップ間のデータのやり取りを光接続で行うチップが民間企業も含めて研究開発されてきたが、製造工程が複雑なため実用化が難しく、簡単な回路しかできなかった。
それに対して、今回のものは、3X6ミリメートルの大きさのチップに7000万個のトランジスタと850個の光学部品を組み込み、プロセッサーが必要とするロジック、メモリー、光相互接続の機能を盛り込んだ。このチップを使った実際のデモでは、光ファイバーを介してメモリーと接続し、グラフィックスプログラムを実行しながら、3Dイメージを表示したり、操作して見せたという。

 標準的なマイクロエレクトロニクスのプロセス用に、直径10マイクロメートル(マイクロは100万分の1)のマイクロリング共振器といった光部品も設計。チップ自体は、大手半導体製造会社であるグローバルファウンドリーズのニューヨーク州フィッシュキルにある、45ナノメートルプロセスの工場設備をそのまま使って製造した。

 データ伝送性能は1平方mm当たり毎秒300ギガビット(ギガは10億)で、現在使われているマイクロプロセッサーの10-50倍あることを実験で確かめた。開発に携わった研究者の推測によれば、現在のデータセンターに設置されたサーバーで使われるエネルギーの20~30%が、プロセッサーやメモリー間のデータ転送に費やされているため、ワイヤから伝送エネルギーが小さく済む光に置き換われば、省エネ面での利点は大きいという。

 一方で、この研究開発をもとに大学発ベンチャーも生まれており、UCバークレーのエンジニアによってAyar Labsというスタートアップが5月に設立された。早ければ2年後をめどにデータセンター向けの試験版の製品開発を目標にしている。

 さらに、このように半導体と光接続を組み合わせたシリコンフォトニクス技術は、開発中の自動運転車に搭載されているレーザーレーダーのライダー(lidar)はじめ、脳の画像化や環境センサーなどにも応用が可能としている。

 研究成果は、24日発行の科学誌ネイチャーに発表された。

引用元: 【電子工学】光接続のプロセッサー、サーバーの超高速化・省エネ化に道を開くか

光接続のプロセッサー、サーバーの超高速化・省エネ化に道を開くかの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/12(木) 06:56:29.18 ID:???*.net
[2015年11月11日22時41分]
 宇宙航空研究開発機構(JAXA)と鉄道総合技術研究所は11日、小惑星のちりを持ち帰った探査機「はやぶさ」の技術を、電車の省エネ運行に役立てるための共同研究を始めたと発表した。

 はやぶさは飛行中に姿勢制御装置にトラブルが起き、機体を温めるための複数のヒーターを上手に制御して消費電力を抑える工夫をした。
鉄道の運行でも、トラブルなどで多くの電車が一斉停止した後で動きだす際に、電力をどのように割り振るかといった課題に応用できるという。

続きはソースで

ダウンロード (1)


(共同)

引用元:http://www.nikkansports.com/general/news/1564928.html

引用元: 【鉄道】はやぶさ技術で省エネ鉄道運行へ[日刊スポーツ]

はやぶさ技術で省エネ鉄道運行への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/04(水) 13:57:01.85 ID:???*.net
クラゲは引く力で前進、進化の前提覆す?米研究
http://www.afpbb.com/articles/-/3065368

【11月4日 AFP】動物や人間は、走ったり、泳いだり、空を飛んだりする際、自分自身を前進させるために、周囲の地面や水や空気に圧力をかける必要があると科学では考えられてきた──
しかし、3日に発表されたクラゲとヤツメウナギの研究によると、少なくとも特定の遊泳性動物に関しては、この前提は誤りであるという。

 英科学誌ネイチャー・コミュニケーションズ(Nature Communications)に発表された研究によると、クラゲと、そしてヘビに似た顎のない円口類の魚のヤツメウナギは、水を後方に押して自身を前進させるのではなく、自分のすぐ前にある水の中に圧力の低い領域を作ることで、自身を前方に「けん引」しているのだという。

 論文共同執筆者、米スタンフォード大学(Stanford University)のジョン・ダビリ(John Dabiri)氏は、AFPの取材に「低圧力は、クラゲの傘型の体の『先端部』で形成される。
これは、傘の下部の流れに着目したクラゲの遊泳力学によるこれまでの理解とは全く異なる」と語り、「遊泳性動物が周囲の水に及ぼす圧力を世界で初めて測定することで、効率的な泳ぎのメカニズムが通説とは大きく異なることを、今回の研究は示した」と続けた。

 今回の研究成果は、エネルギー効率が従来よりはるかに高い潜水艦の設計に役立つことが期待される。

 ダビリ氏によると、生体力学や技術工学などの研究分野ではこれまで、推進力を得るために、低圧ではなく高圧を作り出すことに重点が置かれていたという。

 「動物で観察される、吸引力に基づくメカニズムを工学的に変換できれば、大幅な省エネを実現できるかもしれない」(ダビリ氏)

 ヤツメウナギの場合は横方向への体の動きで、泳ぐ人の場合は手で水をかくことで液体分子を押し集め、高圧を生成する。

 ダビリ氏によると、低圧はさまざまな方法で生成できるが、最も多くみられるのは、体を回転させて旋回渦を発生させ、渦の中心部に低圧領域を作る方法だという。

 このメカニズムで推進力を生成するために必要なエネルギー量は、高圧で同等の推進力を得るよりも少ないとダビリ氏は補足した。

続きはソースで

ダウンロード (3)

(c)AFP/Laurence COUSTAL

参考
Suction-based propulsion as a basis for efficient animal swimming
http://www.nature.com/ncomms/2015/151103/ncomms9790/full/ncomms9790.html

引用元: 【科学】クラゲは引く力で前進、進化の前提覆す? 泳いでいる周囲に及ぼす圧力を世界で初めて測定

クラゲは引く力で前進、進化の前提覆す? 泳いでいる周囲に及ぼす圧力を世界で初めて測定の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: 2014/07/03(木) 19:37:52.04 ID:???.net

電力の損失がほとんどない「超電導ケーブル」を300メートル敷設して電車を走らせる実験に、鉄道総合技術研究所(東京都国分寺市)が3日、成功した。鉄道の大幅な省エネにつながるとみて4~5年後には営業路線での導入を目指す。

鉄道総研がつくったケーブルは、特殊な超電導金属を絶縁体や断熱パイプなどでくるんだ構造。
ケーブルの内部に液体窒素を循環させてセ氏零下196度程度まで冷やすと電気抵抗ゼロで送電できる。
実験では、線路脇に設置した300メートルの超電導ケーブルを通して架線に電気を送り、2両編成の車両を時速45キロで走行させた。不具合はなかったという。

続きはソースで

http://www.nikkei.com/article/DGXNASDG0303D_T00C14A7CR8000/
~~引用ここまで~~



引用元: 【超電導】300メートルの超電導ケーブル敷設、電車走行に成功…鉄道総研


300メートルの超電導ケーブル、電車走行に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: おんさ ★@\(^o^)/ 2014/06/14(土) 15:06:40.52 ID:???.net BE:302861487-2BP(1000)

ミシガン大学がめちゃめちゃ省エネなレーザを発明
http://www.gizmodo.jp/2014/06/post_14780.html

(本文)
ポラリトンすごい。

先日、ミシガン大学の研究者がレーザ研究において大きな一歩となる発明をしました。1950年代の半導体ダイオードの発明以来最大の発明と言えそうです。この発明を使って開発されたプロトタイプレーザでは、従来のレーザの250分の1のエネルギーしか消費しないそう。

一般的なレーザでは、利得媒質と呼ばれる素材にエネルギーを与えることで光を増幅してコヒーレント光を発生させます。エネルギーが媒質に送られると、媒質内の電子がエネルギーを吸収し高いエネルギーレベルに上がります。十分な電子にエネルギーが与えられ媒質が励起状態になると、その後に媒質に入ってくるエネルギーは電子が元のエネルギーレベルに戻るように作用します。その際に放出される余分なエネルギーがコヒーレント光です。ただこのプロセスでは、媒質を励起状態にし、媒質電子を発生させるのに大量のエネルギーが必要になります。

今回開発されたミシガン大学のレーザは、従来の利得媒質には頼っていません。代わりに、ポラリトンと呼ばれるユニークな粒子を使っています。ポラリトンは光と物質が半々の準粒子です。ミシガン大学のプレスリリースではこのように説明されています。

続きはソースで

~~引用ここまで~~



引用元: 【技術】ミシガン大学 従来の250分の1しかエネルギーを消費しないレーザを原理実証 [2014/06/14]


ものすごく省エネなレーザを開発!の続きを読む

このページのトップヘ