理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

磁場

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/04/19(木) 12:25:47.01 ID:CAP_USER
動物の中には地球の磁場を感知する能力を持った種類が多く存在しており、鳥が磁場を目で見て方角を判断している可能性があるといった研究結果も発表されています。
そんな中、アカウミガメは産卵する浜辺を見つける時に、自分が生まれた浜辺と似た磁場を持つ浜辺に現れる特性があることが発見されました。

Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles: Current Biology
http://www.cell.com/current-biology/fulltext/S0960-9822(18)30351-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982218303518%3Fshowall%3Dtrue

Scientists have discovered a fascinating link between magnetic fields and turtle nesting
https://www.sciencealert.com/scientists-have-discovered-a-fascinating-link-between-magnetic-fields-and-turtle-nesting

Current Biologyに研究結果を発表したノースカロライナ大学の生物学者ケネス・ローマン氏は、「アカウミガメは生まれた後に大西洋や太平洋を単独で横断し、また戻ってくるという驚くべき特性を持っています。アカウミガメが戻ってくるのは生まれた付近の浜辺か、その浜辺に非常によく似た磁場を持つ浜辺です」と述べています。

ローマン氏らの研究グループは、アカウミガメの遺伝子構造と出生した浜辺の磁気的特性の間に相関があるのかどうかを調べるため、アメリカ南東の海岸に存在する20の異なるアカウミガメ産卵場所から、834匹分の遺伝子サンプルを入手して分析しました。

続きはソースで

関連ソース画像
https://i.gzn.jp/img/2018/04/16/link-magnetic-fields-and-turtle/00_m.jpg
https://i.gzn.jp/img/2018/04/16/link-magnetic-fields-and-turtle/01_m.jpg

GIGAZINE
https://gigazine.net/news/20180416-link-magnetic-fields-and-turtle/
ダウンロード


引用元: 【動物】アカウミガメは自分が生まれた浜辺と似た「磁場」を持つ浜辺を産卵場所に選ぶ[04/16]

アカウミガメは自分が生まれた浜辺と似た「磁場」を持つ浜辺を産卵場所に選ぶの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/04/07(土) 17:23:10.09 ID:CAP_USER
■渡り鳥のメカニズムを解明するヒントとなりそうな研究成果が、相次いで発表されている

なぜ、渡り鳥は、毎年、一定の時期に、長い距離をはるばる移動し、決まった場所にきちんと降り立つことができるのだろうか。

この謎を解き明かすヒントとなりそうな研究成果が、このところ、相次いで発表されている。

■鳥の網膜にある青色光受容体が磁場を感知?

スウェーデンのルンド大学の研究プロジェクトは、2018年3月、キンカチョウに関する研究成果を英国王立協会の学術誌
「ジャーナル・オブ・ソサエティ・インターフェイス」に発表した。

また、2018年1月には、ドイツのカール・フォン・オシエツキー大学オルデンブルグの研究プロジェクトによるヨーロッパコマドリの研究論文が学術誌「カンレントバイオロジー」に掲載されている。

これらの研究プロジェクトは、いずれも、鳥の網膜に「Cry4」と呼ばれる青色光受容体
「クリプトクロム」の一種が存在することを確認しており、これを通じて、鳥が地球の磁場を感知しているのではないかと考察している。

■網膜、筋肉、脳にある光受容性タンパク質を調べる

「クリプトクロム」は、青色光を感知し、動物の概日リズムに作用する光受容性タンパク質だ。
鳥の磁気受容に関する仮説を1978年に初めて提唱した米イリノイ大学アーバナ・シャンペーン校のクラウス・シュルテン博士は、鳥の目の中にある「クリプトクロム」がその役割を担っているとの見解を示している。

ルンド大学の研究チームでは、キンカチョウの成鳥39羽を対象に、網膜、筋肉、脳にある「Cry1」、「Cry2」および「Cry4」の三種類の「クリプトクロム」が概日リズムを示すのかを分析した。

その結果、網膜の「Cry1」と「Cry2」のレベルは概日リズムに従って変動した一方、「Cry4」はいつでも一定であった。

続きはソースで

関連画像
https://www.newsweekjapan.jp/stories/assets_c/2018/04/iStock-534086693a-thumb-720xauto.jpg
鳥が磁気を見るイメージ
https://www.newsweekjapan.jp/stories/2018/04/05/save/magnetic.jpg

関連動画
The Robin's Winter Song https://youtu.be/39MuRLiimrU



ニューズウィーク日本版
https://www.newsweekjapan.jp/stories/world/2018/04/post-9893.php
ダウンロード (3)


引用元: 【動物/生態】渡り鳥をナビゲートする「体内コンパス」の正体が明らかに[04/05]

渡り鳥をナビゲートする「体内コンパス」の正体が明らかにの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/26(月) 09:59:38.59 ID:CAP_USER
東京大学(東大)は、銅酸化物高温超伝導体でヒッグスモードと呼ばれる超伝導の励起(さざ波)が存在することを実験により明らかにしたと発表した。

同成果は、東大低温センター理学系研究科物理学専攻の島野亮 教授らの研究グループ、理化学研究所の辻直人 研究員、産業技術総合研究所電子光技術研究部門の青木秀夫 招聘研究員の理論研究グループ、およびパリ・ディドロ大学のYann Gallais 教授らとの共同研究によるもの。
詳細は英国の学術誌「Physical Review Letters」に掲載された。

超伝導とは、金属の温度を冷やしたときに電気抵抗がある温度以下でゼロになり、同時に磁場が超伝導体内部に侵入できなくなる現象だ。

元々、超伝導は非常に低い温度で生じる現象と考えられていたが、1986年に銅酸化物高温超伝導体が発見され、液体窒素温度摂氏-196℃(77K)以上でも超伝導が生じることが示された。

その後、室温超伝導実現の期待のもとに超伝導発現の機構解明が進められ、高温超伝導体の理解は進歩した。
しかし、超伝導の発現機構そのものは完全には解明されておらず、現代の物性物理学の難問の1つとされている。

続きはソースで

図:銅酸化物高温超伝導体のd波超伝導秩序変数が振動する様子の概念図
https://news.mynavi.jp/article/20180319-603267/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180319-603267/
ダウンロード (1)


引用元: 【物理学】東大、高温超電導体で超伝導の励起が存在することを確認[03/19]

東大、高温超電導体で超伝導の励起が存在することを確認の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/22(木) 11:57:26.12 ID:CAP_USER
【3月22日 AFP】
英国の科学者らが21日、頭部に装着可能な次世代の脳スキャン機器を開発したとの研究論文を発表した。
新たに開発された機器は、ヘルメットのように頭にかぶることができ、脳スキャンを実行中でも患者が自由に動けるため、子どもや高齢者の神経疾患の治療に大変革をもたらす可能性があるという。

 うなずきやストレッチといった自然な動作、さらにはラケットでピンポン球を打つといった動きの最中でも、患者の脳活動の調査を初めて可能にしたこの技術について、科学者らは大きな期待を寄せている。

 現在の「脳磁図(MEG)」と呼ばれる脳スキャン技術では、脳の磁場を測定するために用いられるセンサーを絶対零度に近いマイナス269度の超低温に維持する必要があるため、大がかりな冷却技術が不可欠となる。

 装置の重量は通常500キロ前後に及び、患者は生成される脳画像が乱れないように完全に静止した状態を保たなくてはならない。
幼児やパーキンソン病などの運動性疾患のある人の場合では、体の静止状態を長時間保つことが難しく、患者の脳スキャンをMEGで行うことには困難が伴うことが多い。

 英ロンドン大学ユニバーシティー・カレッジ(UCL)と英ノッティンガム大学(University of Nottingham)の研究チームが開発した最新の脳スキャン機器は、最先端の「量子」脳センサーを用いることで冷却を不要にした。これは脳走査技術における2つの大きな飛躍を示している。

「一つは、頭皮の表面に直接装着できることだ。
従来よりはるかに脳の近くにスキャナー(測定器)を接近させることができるので、得られる脳信号の量が増える」と、ノッティンガム大のマシュー・ブルックス(Matthew Brookes)准教授は説明する。

続きはソースで

(c)AFP

関連ソース画像
http://afpbb.ismcdn.jp/mwimgs/3/9/700x460/img_39ebed7ac83b65f06c328dc41651766a174754.jpg

AFP
http://www.afpbb.com/articles/-/3168309
ダウンロード


引用元: 【脳走査技術】最先端の「量子」脳センサーのウェアラブル脳スキャナー、神経疾患治療に大変革か 英研究[03/22]

【脳走査技術】最先端の「量子」脳センサーのウェアラブル脳スキャナー、神経疾患治療に大変革か 英研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/05(月) 03:40:04.38 ID:CAP_USER
地球の磁気はここ数十年で急激に弱まっていることが、科学者らによって確認されている。
ここから予測されるのは、北と南の磁極が入れ替わる「磁極の逆転(ポールシフト)」が近い将来に起こる可能性だ。

地球史において磁極の逆転はかなり頻繁に起きているが、そのメカニズムや時期については謎めいた部分が多い。
ロチェスター大学の地質学者らが、最近発表したレポートで南アフリカにおける磁気の変化について報告した。

地磁気の変化は世界のいたる所で、岩石の中に記録されている。
これまでの調査で、磁極の逆転現象は過去2000万年の間に、約20万年から30万年に1回のサイクルで発生していたことが確認されている。
しかし、非常に恐ろしいことに、最後に発生したのが80万年近くも前のことなのだ。

これまでの周期で磁極の逆転が起きるのであれば、80万年の間に2回や3回、それが発生していても不思議ではない。
もしかしたら、人類はもう間もなくその現場に居合わせることになるのかもしれない。
ここ数十年の間、地球の磁力は10年で5%の割合で弱まっていることも、逆転の到来が近づいていることを示している。

磁極の逆転が起こった場合、人類を壊滅的な事態が襲うだろう。

続きはソースで

関連ソース画像
https://d1kls9wq53whe1.cloudfront.net/articles/20001/200x300/f4b83cded809dda9fad3401665167a39.jpg

Forbes
https://forbesjapan.com/articles/detail/20001
ダウンロード (3)


引用元: 【ポールシフト】人類を襲う「地磁気の逆転」の恐怖、その時期を科学者が調査[03/04]

【ポールシフト】人類を襲う「地磁気の逆転」の恐怖、その時期を科学者が調査の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/02/01(木) 03:16:43.19 ID:CAP_USER
-電磁濃縮法により、物性測定に実用可能な超強磁場を発生-

〈発表のポイント〉

・電磁濃縮法(注1、図1)という超強磁場発生方法で985テスラという強力な磁場を発生させ、それを高精度に計測することに成功しました。

・1000テスラという超強力な磁場が発生可能であること、また、今後、1000テスラ領域での極限的な超強磁場環境での物性計測が可能であることを示しました。

・物性物理学の新しい発見とマテリアルサイエンスへの多大な貢献が期待されます。

〈発表概要〉
東京大学物性研究所の嶽山正二郎教授、中村大輔助教、澤部博信技術職員の研究グループは、電磁濃縮法という超強磁場発生方法で985 テスラという強力な磁場を発生し、それを高精度に計測することに成功しました。室内での実験、かつ高度に制御された磁場として、これまでの世界最高記録730 テスラ(2011年、同研究グループ)を大幅に更新し、1000 テスラ目前まで到達しました。

物性研究所では1970年代からパルス法による超強磁場発生とこれを用いた極限的環境での物性物理学への応用研究に向けた開発を行っています。中村助教は、独自に開発したシミュレーションにより、嶽山教授により考案された電磁濃縮用の高効率磁場発生コイルを用いて、種磁場(注2)の値を調整することによって、より強力な磁場が発生できることを、高い信頼性で予測しました。
他方、1000テスラ近くでは、強烈な電磁ノイズ、磁束の高速収縮に伴う衝撃波、その他電気絶縁破壊等の問題により、電気的な測定では600テスラ程度の測定が技術的な限界でした。本研究グループは、ファラデー回転(注3)という光学的な測定手法を用い、さまざまな工夫と高度な計測技術によって、磁場の最高到達点近傍まで精密に測定することを可能にしました。

これにより1000テスラという超強力な磁場が発生可能であること、また、今後、1000テスラ領域での極限的な超強磁場環境での物性計測が可能であることを示しました。
この発生磁場は空間的にも時間的にも人工的に制御可能で、しかも、さまざまな信頼性ある物理計測が可能なため、半導体、ナノマテリアル、有機物質、超伝導体、磁性体で未解明の固体物理量子現象の解明により強力な手段を手に入れたとも言えます。

本成果は、測定技術および装置開発の分野での世界トップの権威ある科学誌である
American Institute of Physics (AIP) 出版局が刊行する科学誌
「Review of Scientific Instruments」の2月18日版(オンライン1月30日版)に掲載される予定です。
また同誌の”Editors’ Pick”に採用されました。

続きはソースで

画像:図1 電磁濃縮法による超強磁場発生方法の模式図。
両側に磁束濃縮に用いる種磁場を発生するパルス電磁石がセットされる。
主コイルの中心にライナーと呼ぶ金属筒をセットし、電磁誘導による電磁応力を使ってこれを超高速に収縮させて磁束を濃縮して超強磁場を得る。
http://www.issp.u-tokyo.ac.jp/news/wp-content/uploads/2018/01/fig1-4-1024x685.png

東京大学
http://www.issp.u-tokyo.ac.jp/maincontents/news2.html?pid=4409
ダウンロード (1)


引用元: 【物理学】東大 世界最高磁場の大幅記録更新985テスラを達成[18/01/31]

東大 世界最高磁場の大幅記録更新985テスラを達成の続きを読む

このページのトップヘ