1: 2016/09/29(木) 17:54:44.51 ID:CAP_USER
共同発表:環動ポリマー構造を導入し竹のようにしなやかでタフなポリマー材料を開発
http://www.jst.go.jp/pr/announce/20160928-2/index.html
http://www.jst.go.jp/pr/announce/20160928-2/icons/zu1.gif
http://www.jst.go.jp/pr/announce/20160928-2/icons/zu2.gif
ポイント
分子設計に加えナノアロイ®技術注1)を適用することで、ポリマー注2)材料への環動ポリマー構造注3)の導入に世界で初めて成功し、従来材料と比較して約6倍の破断伸び注4)と約20倍の屈曲耐久性注5)を達成した。
環動ポリマー構造の導入により、ポリマー材料が持つポテンシャルを最大限に引き出せる可能性があり、自動車、家電、スポーツ用品など、幅広い分野への応用展開とポリマー材料市場の拡大が期待される。
内閣府 総合科学技術・イノベーション会議が主導する革新的研究開発推進プログラム(ImPACT)の伊藤 耕三 プログラム・マネージャーの研究開発プログラムの一環として、東レ株式会社の小林 定之 研究主幹のグループは、分子結合部がスライドする環動ポリマー構造を導入した「しなやかでタフなポリマー材料」を開発しました。
自動車や家電などに用いられるポリマー材料は、一般的に、硬くすると脆くなり壊れやすくなります。一方、壊れにくくするために柔らかい材料を配合すると、強度が低下するという課題があり、使用時には硬く強く(高剛性)、変形時には壊れにくい(高靭性)、硬くても力を受け流す竹のような材料の開発が望まれていました。
本研究グループは、ポリアミド注6)に、分子結合部がスライドする環動ポリマーの構造を組み込むことで、加えられた力を分子レベルで分散し、硬さや強さを保ちながらも、衝撃を受けても壊れにくい材料を開発することに世界で初めて成功しました。これは、ポリロタキサン注7)の分子設計に加え、2種類以上のプラスチックをナノメートル単位で最適に混合する東レ保有技術であるナノアロイ®を適用することで可能となったものです。開発した材料は、従来のポリアミドに比べて、約6倍の破断伸びと約20倍の屈曲耐久性を示しました。また、車体構造材を想定した衝撃試験では、2倍以上のエネルギーを吸収することがわかりました。
環動ポリマー構造の導入により、ポリマーの持つポテンシャルを最大限に引き出せる可能性があることから、今後、自動車、家電、スポーツ用品など、幅広い分野への応用展開とポリマー材料市場の拡大が期待されます。
本研究は、東京大学の伊藤 耕三 教授、大阪大学の原田 明 特任教授、山形大学の伊藤 浩志 教授、井上 隆 客員教授、九州大学の高原 淳 主幹教授、東京工業大学の中嶋 健 教授、理化学研究所の高田 昌樹 グループディレクターと星野 大樹 研究員、アドバンスト・ソフトマテリアルズ株式会社(ASM)の協力を得て行いました。
続きはソースで
http://www.jst.go.jp/pr/announce/20160928-2/index.html
http://www.jst.go.jp/pr/announce/20160928-2/icons/zu1.gif
http://www.jst.go.jp/pr/announce/20160928-2/icons/zu2.gif
ポイント
分子設計に加えナノアロイ®技術注1)を適用することで、ポリマー注2)材料への環動ポリマー構造注3)の導入に世界で初めて成功し、従来材料と比較して約6倍の破断伸び注4)と約20倍の屈曲耐久性注5)を達成した。
環動ポリマー構造の導入により、ポリマー材料が持つポテンシャルを最大限に引き出せる可能性があり、自動車、家電、スポーツ用品など、幅広い分野への応用展開とポリマー材料市場の拡大が期待される。
内閣府 総合科学技術・イノベーション会議が主導する革新的研究開発推進プログラム(ImPACT)の伊藤 耕三 プログラム・マネージャーの研究開発プログラムの一環として、東レ株式会社の小林 定之 研究主幹のグループは、分子結合部がスライドする環動ポリマー構造を導入した「しなやかでタフなポリマー材料」を開発しました。
自動車や家電などに用いられるポリマー材料は、一般的に、硬くすると脆くなり壊れやすくなります。一方、壊れにくくするために柔らかい材料を配合すると、強度が低下するという課題があり、使用時には硬く強く(高剛性)、変形時には壊れにくい(高靭性)、硬くても力を受け流す竹のような材料の開発が望まれていました。
本研究グループは、ポリアミド注6)に、分子結合部がスライドする環動ポリマーの構造を組み込むことで、加えられた力を分子レベルで分散し、硬さや強さを保ちながらも、衝撃を受けても壊れにくい材料を開発することに世界で初めて成功しました。これは、ポリロタキサン注7)の分子設計に加え、2種類以上のプラスチックをナノメートル単位で最適に混合する東レ保有技術であるナノアロイ®を適用することで可能となったものです。開発した材料は、従来のポリアミドに比べて、約6倍の破断伸びと約20倍の屈曲耐久性を示しました。また、車体構造材を想定した衝撃試験では、2倍以上のエネルギーを吸収することがわかりました。
環動ポリマー構造の導入により、ポリマーの持つポテンシャルを最大限に引き出せる可能性があることから、今後、自動車、家電、スポーツ用品など、幅広い分野への応用展開とポリマー材料市場の拡大が期待されます。
本研究は、東京大学の伊藤 耕三 教授、大阪大学の原田 明 特任教授、山形大学の伊藤 浩志 教授、井上 隆 客員教授、九州大学の高原 淳 主幹教授、東京工業大学の中嶋 健 教授、理化学研究所の高田 昌樹 グループディレクターと星野 大樹 研究員、アドバンスト・ソフトマテリアルズ株式会社(ASM)の協力を得て行いました。
続きはソースで

引用元: ・【材料科学】環動ポリマー構造を導入し竹のようにしなやかでタフなポリマー材料を開発 [無断転載禁止]©2ch.net
環動ポリマー構造を導入し竹のようにしなやかでタフなポリマー材料を開発の続きを読む