1: 2015/07/29(水) 22:24:23.39 ID:???*.net
http://www3.nhk.or.jp/news/html/20150729/K10010171241_1507292001_1507292003_01_03.jpg
これまでの遺伝子組み換え技術よりもはるかに正確に遺伝子を操作できる「ゲノム編集」と呼ばれる技術を使い、高級魚として知られる「マダイ」を通常の1.5倍程度の重さにまで大きくすることに京都大学などの研究グループが成功しました。今後、魚の品種改良が本格的に始まる可能性があると注目されています。
研究を行ったのは京都大学の木下政人助教と近畿大学などのグループです。
「ゲノム編集」は、これまでの遺伝子組み換え技術よりもはるかに正確に遺伝子を操作できる技術で、ここ数年、急速に研究が進んでいます。
研究グループは、この技術を使い、高級魚として知られるマダイで筋肉の量を調節している「ミオスタチン」という遺伝子を操作しました。
その結果、ふ化して1年の時点で、大きいもので通常の1.2倍から1.5倍の重さにまで育つマダイを作り出すことに成功したということです。
食品としての安全性は、今後、検討されるということですが、この技術を使って魚の品種改良が本格的に始まる可能性があると注目されています。
木下助教は「ゲノム編集により水産物の品種改良が大きく進めば、食糧問題にも貢献できると考えられる」と話しています。
ゲノム編集を巡っては、すでに筋肉の量が従来の2倍ある牛などが作られる一方で、中国の研究グループがヒトの受精卵で遺伝子を改変したとする論文を発表し、倫理的な問題も指摘されています。
遺伝子をねらいどおり操作可能
「ゲノム編集」は、生物の遺伝子をねらいどおりに操作できる技術で、いわば生命の設計図を自在に書き換えることができるものです。
これまでにも「遺伝子組み換え」と呼ばれる技術はありましたが、大きな違いは、「偶然」ではなく「ねらいどおり」に操作できる点です。
「遺伝子組み換え」の場合、遺伝子の中の特定の場所に別の遺伝子を入れることで生物の持つ特性を変え、「農薬に強い大豆」や「害虫がつきにくいトウモロコシ」などが作られてきました。しかし、この特定の場所に別の遺伝子を入れる作業は何千回、何万回試して初めて入れることができるという「偶然」に頼っていて、簡単ではありませんでした。
これに対し、ねらいどおりにできるようにしようと開発されてきたのが「ゲノム編集」の技術です。鍵となったのは、遺伝子を切り貼りするはさみの役割をしている物質をねらった場所に届ける技術の開発です。
1990年代からいくつかの方法が開発されてきましたが、おととし発表された「クリスパー・キャス法」という新たな方法が画期的で、一気に研究が進むことになりました。「クリスパー・キャス法」では、遺伝子の特定の場所を探しだし、そこに、はさみの役割をする物質を誘導することができます。
狙った遺伝子を働かなくさせたり、その場所に別の遺伝子を入れたりすることが簡単かつ正確に行えるようになり、研究が急速に進展するようになったのです。
続きはソースで
http://www3.nhk.or.jp/news/html/20150729/k10010171241000.html
これまでの遺伝子組み換え技術よりもはるかに正確に遺伝子を操作できる「ゲノム編集」と呼ばれる技術を使い、高級魚として知られる「マダイ」を通常の1.5倍程度の重さにまで大きくすることに京都大学などの研究グループが成功しました。今後、魚の品種改良が本格的に始まる可能性があると注目されています。
研究を行ったのは京都大学の木下政人助教と近畿大学などのグループです。
「ゲノム編集」は、これまでの遺伝子組み換え技術よりもはるかに正確に遺伝子を操作できる技術で、ここ数年、急速に研究が進んでいます。
研究グループは、この技術を使い、高級魚として知られるマダイで筋肉の量を調節している「ミオスタチン」という遺伝子を操作しました。
その結果、ふ化して1年の時点で、大きいもので通常の1.2倍から1.5倍の重さにまで育つマダイを作り出すことに成功したということです。
食品としての安全性は、今後、検討されるということですが、この技術を使って魚の品種改良が本格的に始まる可能性があると注目されています。
木下助教は「ゲノム編集により水産物の品種改良が大きく進めば、食糧問題にも貢献できると考えられる」と話しています。
ゲノム編集を巡っては、すでに筋肉の量が従来の2倍ある牛などが作られる一方で、中国の研究グループがヒトの受精卵で遺伝子を改変したとする論文を発表し、倫理的な問題も指摘されています。
遺伝子をねらいどおり操作可能
「ゲノム編集」は、生物の遺伝子をねらいどおりに操作できる技術で、いわば生命の設計図を自在に書き換えることができるものです。
これまでにも「遺伝子組み換え」と呼ばれる技術はありましたが、大きな違いは、「偶然」ではなく「ねらいどおり」に操作できる点です。
「遺伝子組み換え」の場合、遺伝子の中の特定の場所に別の遺伝子を入れることで生物の持つ特性を変え、「農薬に強い大豆」や「害虫がつきにくいトウモロコシ」などが作られてきました。しかし、この特定の場所に別の遺伝子を入れる作業は何千回、何万回試して初めて入れることができるという「偶然」に頼っていて、簡単ではありませんでした。
これに対し、ねらいどおりにできるようにしようと開発されてきたのが「ゲノム編集」の技術です。鍵となったのは、遺伝子を切り貼りするはさみの役割をしている物質をねらった場所に届ける技術の開発です。
1990年代からいくつかの方法が開発されてきましたが、おととし発表された「クリスパー・キャス法」という新たな方法が画期的で、一気に研究が進むことになりました。「クリスパー・キャス法」では、遺伝子の特定の場所を探しだし、そこに、はさみの役割をする物質を誘導することができます。
狙った遺伝子を働かなくさせたり、その場所に別の遺伝子を入れたりすることが簡単かつ正確に行えるようになり、研究が急速に進展するようになったのです。
続きはソースで
http://www3.nhk.or.jp/news/html/20150729/k10010171241000.html
引用元: ・【科学】 遺伝子組み換え技術よりも正確に遺伝子を操作できる 「ゲノム編集」で1.5倍の大きさの魚に[7/29]
遺伝子組み換え技術よりも正確に遺伝子を操作できる 「ゲノム編集」で1.5倍の大きさの魚にの続きを読む