理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

量子

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/07/17(水) 00:57:22.05 ID:CAP_USER
「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功(記事全文は、ソースをご覧ください。)
https://wired.jp/2019/07/16/quantum-entanglement-photo/
2019.07.16 TUE 18:00
WIRED,TEXT BY SANAE AKIYAMA

2つの粒子が強い相互関係にある「量子もつれ」と呼ばれる現象を、英大学の研究チームが世界で初めて画像に記録することに成功した。今回の実験で得られた画像処理の技術は、量子コンピューティングや量子暗号の進化にも貢献することが期待されている。

(写真)PHOTOGRAPH BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW
https://wired.jp/wp-content/uploads/2019/07/quantum-og.jpg

ミクロの世界を正しく説明するうえで欠かせない量子力学に、「量子もつれ」と呼ばれる現象がある。量子もつれとは、2つの粒子が強い相互関係にある状態であり、粒子のスピン、運動量などの状態をまるで「コインの裏表」のように共有する運命共同体のような状態を指す。

例えば、一方の粒子を観測したときのスピンが上向きであれば、もう一方は瞬時に下向きになる。このような量子もつれにある2粒子間の状態は、どれほどの距離──たとえ銀河の端から端という途方もない隔たりがあろうが、維持されるのだという。この同期の速度が光の速度を超えるという、まるで空間など存在していないかのような非局所性から、偉大な物理学者アルバート・アインシュタインが、かつて「不気味な遠隔作用」と呼んだほどだ。

そんな量子もつれの状態を画像に収めることに、このほど英国のグラスゴー大学の研究チームが成功した。量子もつれの状態にある光子の様子を捉え、オープンアクセスの科学学術誌『Science Advances』で画像を公開したのだ。これは、量子もつれの判断基準とされる「ベルの不等式」の破れをもとに量子もつれを実験的に可視化する技術で、もつれ状態にある粒子ペアがひとつの画像に収められたのは今回が初めてだという。

・かくして「量子もつれ」は画像に記録された
マクロの世界における物質の状態は、観測者がいるかどうかに関わらず、すでに決定している。対してミクロの世界では、量子が実際にどのような状態にあるのかは、何かに“観測される”まで不確定だと考えられている。これまで量子もつれ現象は実験的には立証されていたものの、「観測されるまで状態が決定されない量子もつれ」を、いかに画像に収めるのかという実験的セットアップを考案するのは至難の業だった。

今回の実験では量子もつれ状態を確認するため、「ベルの不等式」と呼ばれる式が使用されている。「ベルの不等式」は、古典的に説明できる粒子の相関関係の上限を示した数式で、これによって実験が「量子的」なものなのか「古典的」に説明できるものなのかを区別できる。「ベルの不等式」の上限が破られると、実際に2つの粒子が量子もつれの状態にあることが示される。

(画像)研究チームは自発的パラメトリック下方変換(SPDC)と呼ばれる手法を用いて量子もつれ状態をつくりだした。IMAGE BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW
https://wired.jp/wp-content/uploads/2019/07/F1.large_-e1563242598410.jpg

研究チームは、自発的パラメトリック下方変換(SPDC)と呼ばれる手法によって、まず光子をもつれ状態にした。次にビームスプリッターによって光子対を2つに分割する。光子1の通路には通過の際にランダムに位相が決まるフィルター(0°、45°、90°、135°)を設置してあり、光子2はフィルターを通過せずにまっすぐに進む。研究チームは、光子1と、もつれた光子2の両方を同じタイミングで捉えたときにのみ検出できる超高感度カメラを設置し、これらの可視記録を作成した。

4つの異なる位相において見られる量子のもつれ画像は、実に4万フレームを組み合わせたものだ。光子ペアはフィルターを通る前に分割されているにもかかわらず、両方がフィルターの位相と同じ相転移をしているのが見てとれる。

■■略

https://wired.jp/wp-content/uploads/2019/07/F2.large_-e1563242997968.jpg
(画像)4つの異なる位相において見られる量子のもつれ画像は、実に4万フレームを組み合わせたものだ。光子ペアはフィルターを通る前に分割されているにもかかわらず、両方がフィルターの位相と同じ相転移をしているのが見てとれる。IMAGE BY SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF GLASGOW

続きはソースで

WIRED
ダウンロード



引用元: 【量子力学】「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功[07/17]

「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/07/01(月) 00:18:30.82 ID:CAP_USER
史上初、水素の金属化に成功? 今度こそ本当っぽい
https://headlines.yahoo.co.jp/hl?a=20190629-00010005-giz-sci
https://headlines.yahoo.co.jp/hl?a=20190629-00010005-giz-sci&p=2
2019/6/29
YAHOO!JAPAN NEWS,ギズモード・ジャパン

 物理界のはぐれメタル捕獲で、人類の経験値が爆上がりするかも。

 80年以上前、物理学者のユージン・ウィグナーが、水素に特定の温度と圧力をかけると金属になりうる、と予測しました。
 水素って目に見えない気体のイメージですが、それが金属になるっていうコンセプトがメタルスライムっぽくていいですね。
 その後数々の研究者が金属水素の生成に挑戦してきたのに誰も見つけられてないっていう意味では、
 はぐれメタルといったほうがいいかもしれません。

 が、ついに今、ある研究チームがそれに成功した…のかもしれません。
 フランス原子力庁のPaul Loubeyre氏を中心とする研究チームが、
 液体水素に地球の核内部以上の圧力をかけた実験結果についての論文をarXivにポストしました。
 Loubeyre氏らは、液体水素に今までにない高い圧力を与えることで、金属のような性質を呈したと言っています。

 ただこれまでにも、たとえば2017年にハーバード大学の研究チームが、
 その前には2012年にドイツのマックス・プランク研究所のチームが、
 金属水素の生成成功を主張していましたが、どちらもわりと懐疑的な反応をされていて、
 その主張の正しさも確認できていません。
 でも専門家の中には、今回こそは本物だと考えている人たちもいます。

 ・金属水素ってすごいの?

■■中略

 ・この実験のミソ
 論文を書いたLoubeyre氏らはまずこれまでの研究を生かし、
 ダイヤモンドアンビルセル(ごく小さなダイヤモンドふたつの間にサンプルをはさんで超高圧をかける機械)で気体状の水素を310GPaで圧縮し、
 固体の水素を生成しました。
 そして彼らは圧力をさらに上げていき、粒子加速器のSOLEILシンクロトロンが出す赤外線に水素サンプルがどう反応するかを計測しました。

 すると圧力425GPa前後、温度80ケルビン(摂氏マイナス193.15度)の状態で、サンプルが突然すべての赤外線を吸収し始めました。
 この状態は論文では「バンドギャップが埋まった」と書かれてるんですが、言い換えると、
 エネルギーを加えなくても水素サンプル上を電子が通れるようになったということです。

 まとめると、彼らは水素ガスを超コンパクトに圧縮して量子閉じ込め効果を利用することで、
 水素に金属のような電気を流す性質を与えることができた、と言ってるわけです。

詳細・続きはソースで

ダウンロード (4)


 Source: arXiv、Nature、Jstage、Wikipedia、Twitter
 Ryan F. Mandelbaum - Gizmodo US [原文] ( 福田ミホ )

引用元: 【化学】史上初、水素の金属化に成功? 今度こそ本当っぽい[07/01]

史上初、水素の金属化に成功? 今度こそ本当っぽいの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/21(金) 07:16:10.91 ID:CAP_USER
量子重力には対称性はない ― 大栗機構長らが証明
https://www.ipmu.jp/ja/20190619-symmetry
2019年6月19日
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)

 画像:図1. 「量子重力理論は対称性を持たない」ことを背理法で証明する図。
    もし対称性があるとすると、それは図の灰色で塗られた部分にしか作用せず、中心の黒い点のまわりの状態には変化を起こさない。
    円周を細かく分けていくと、灰色の部分をいくらでも小さくできるので、対称性には、どこにも作用しないことになる。
    これは矛盾である。(Credit:Harlow and Ooguri)
 https://www.ipmu.jp/sites/default/files/imce/medium.png

 1. 発表概要
 東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU) の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、素粒子論の重要な原理であった対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。この証明にあたっては、量子コンピューターで失われた情報を回復する鍵とされる「量子誤り訂正符号」とホログラフィー原理との間に近年発見された関係性を用いるという新たな手法が用いられました。本研究成果は、素粒子の究極の統一理論の構築に大きく貢献するものであるとともに、近年注目される量子コンピューターの発展にも寄与すると期待され、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で掲載され、成果の重要性から注目論文(Editors’ Suggestion)に選ばれました。


 2. 発表内容
 宇宙が始まった当初、「電磁気力」「強い力」「弱い力」「重力」の4つの力が全て統一されていたと考えられています。ミクロの世界を記述する量子力学を基礎とした理論を用いて、「電磁気力」「強い力」「弱い力」の3つの力については統一的に説明できますが、重力を含めた4つの力も含め統一的に説明する理論については未だ研究途上の重要な課題であり、様々な面から研究がなされています。

続きはソースで

関連情報
Kavli IPMU
https://twitter.com/KavliIPMU/status/1141211169991974914
https://twitter.com/5chan_nel (5ch newer account)
ダウンロード (3)


引用元: 【量子力学/統一理論 】量子重力には対称性はない ― 大栗機構長らが証明[06/19]

【量子力学/統一理論 】量子重力には対称性はない ― 大栗機構長らが証明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/04/04(木) 15:29:49.54 ID:CAP_USER
量子力学分野における「ウィグナーの友人」と呼ばれる思考実験では、2人の観測者が相異なる矛盾する実在を体験できるという結論が導かれる。この結論は長年疑問視されてきたが、その結論が正しいことを検証する「実際」の実験を初めて実施した。

1961年のことだ。ノーベル物理学賞受賞者のユージン・ウィグナーは、さほど知られていない量子力学のパラドックスを論証した思考実験の概要をまとめた。ウィグナーの思考実験は、2人の観察者(ここでは、ウィグナーとウィグナーの知人)が異なる実在を体験できるという量子力学の奇妙な本質を示している。

以来、物理学者は「ウィグナーの友人」思考実験を使って測定の本質を探求し、客観的事実が存在するか否か議論してきた。客観的事実を立証するために実験をする科学者にとって、この議論は重要だ。もしも、科学者たちが異なる実在をそれぞれ体験するなら、彼らが合意できる客観的事実は存在しないことになる。

続きはソースで

https://www.technologyreview.jp/s/130562/a-quantum-experiment-suggests-theres-no-such-thing-as-objective-reality/
ダウンロード (1)


引用元: 【量子力学】客観的実在は存在せず?量子力学の逆説「ウィグナーの友人」を初実験[04/04]

客観的実在は存在せず?量子力学の逆説「ウィグナーの友人」を初実験の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/03/24(日) 14:42:41.19 ID:CAP_USER
量子力学の理論によると「量子もつれ」状態にある粒子ペアは、一方の粒子を状態を測定すると、互いがどんなに離れていても、ただちにもう一方の粒子の状態に影響を及ぼす。直感に反するこの特性の根底に「隠れた変数理論」があるのかどうかを調べるため、前例のない規模の実験が実施された。もし、隠れた変数理論が存在すれば、量子暗号は完全に安全とは言えないことになる。

好奇心をそそられる質問がある。物理現象には原因のないものがあるのだろうか、それとも、すべての作用には理由があるのだろうか?

この難問は基礎科学の最も奇妙な分野の1つである量子物理学における核心的な質問だ。科学史上最大級の人物たちを悩ませてきた質問でもある。

この問題はまた、量子コンピューターや量子暗号などの新テクノロジーにとって重要な意味を持つ。もしかすると、原因と結果についての人々の理解を変えかねない、全く新しい科学分野の核心となる問題かもしれない。

今日、この質問に対する1つの答えが得られている。スペインのバルセロナ科学技術研究所(Barcelona Institute of Science and Technology)のモーガン・ミッチェル博士と数十人の共同研究者、および量子理論の最も混乱を呼ぶ予測に関するかつてない実験に参加した、世界中の10万人を超えるボランティアのおかげである。

ミッチェル博士らの結論は、すべての作用に説明が必要なわけではないというものだ。ミッチェル博士と共同研究者たちは、「もし人間の意思が自由だとすれば、原因のない物理現象が存在します」という。実証に基づく科学的手法を使って、自由意思という形而上学的概念を初めて基礎物理学とリンクさせた研究と言える。

まず、背景について少し説明しよう。量子力学の奇妙な特性の1つに、空間的、時間的に同じポイントに生成された複数の量子粒子が同じ存在を共有できることがある。このような関連は「量子もつれ(エンタングルメント)」と呼ばれ、粒子同士が動いてどれだけ離れても相互の関連は損なわれない。

続きはソースで

https://www.technologyreview.jp/s/88840/how-the-nature-of-cause-and-effect-will-determine-the-future-of-quantum-technology/
ダウンロード


引用元: 【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験

【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/21(木) 14:55:25.37 ID:CAP_USER
超強力なスーパーコンピューターの処理能力をはるかに凌ぎ、産業界全体に変革をもたらす可能性があるとして、量子コンピューターの研究・開発に多額の資金が投入されている。日々報じられる関連ニュースを読み解くために押さえておきたい基礎知識を説明する。

子コンピューターは、ほとんど神秘的といえる量子力学の現象を利用して、処理能力を飛躍的に向上させる。現在、そして将来のもっとも高性能なスーパー・コンピューターの処理能力さえもはるかに凌ぐことが期待されている。

量子コンピューターは従来のコンピューター(古典的コンピューター)を完全に置き換えるものではない。古典的コンピューターは今後も、ほとんどの問題に対処するためのもっとも簡単で経済的な解決策として使われ続けるだろう。だが、量子コンピューターは、材料科学から医薬品研究に至るまで、さまざまな分野に胸躍る進歩をもたらすことが期待されている。すでに、量子コンピューターを用いて、電気自動車用のより軽く強力な電池を開発しようとしたり、新薬開発に役立てたりしようとしている企業もある。

量子コンピューターが持つ力の秘密は、量子ビット(キュービット)を生成し、操作する能力にある。

■「キュービット」とは何か?

現在のコンピューターは、1か0を表す一連の電気パルスまたは光パルスであるビットを用いて演算をする。ツイッターのツイートからメール、iTunesの楽曲、YouTubeの動画に至るまで、さまざまなものが本質的にはこの2進数の長い文字列でできている。

一方、量子コンピューターは演算の単位として通常、電子や光子といった素粒子である「キュービット」を用いる。キュービットを生成し、操作することは科学的・工学的に困難な課題となっている。IBM、グーグル、リゲッティ・コンピューティング(Rigetti Computing)といったいくつかの企業は、深宇宙よりも低温に冷却された超伝導回路を用いている。イオンQ(IonQ)などの他の企業は、超高真空チャンバー内のシリコンチップ上の電磁場に個々の原子を閉じ込める手法を用いている。どちらの場合も、制御された量子状態にあるキュービットを、外部環境から隔絶することを目指している。

キュービットは、いくつかの奇妙な量子的性質を持つ。その結果、相互につながった一連のキュービットは、同数のバイナリー・ビットよりはるかに強力な処理能力を持つことになる。キュービットの不可思議な量子的性質には、「重ね合わせ」として知られる性質や「量子もつれ」と呼ばれる性質がある。

■「重ね合わせ」とは何か?

キュービットは、1と0の数多くの取り得る組み合わせを同時に表せる。このような、同時に複数の状態で存在できる能力を「重ね合わせ」と呼ぶ。研究者は、精密レーザーやマイクロ波ビームを用いてキュービットを操作し、キュービットを重ね合わせ状態にする。

直感に反するこの現象により、重ね合わせ状態にあるいくつかのキュービットを備えた量子コンピューターは、膨大な数の起こり得る結果を同時に並列して処理できる。最終的な計算結果は、キュービットを測定して初めて得られる。測定するとキュービットの量子状態は直ちに1または0に「崩壊」する。

https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/02/18140458/062118rigetti0584finalsquare-cropped.jpg 

■「量子もつれ」とは何か? 

研究者は、「もつれ合った」キュービットの対を生成できる。対を成す2つのキュービットが同一の量子状態で存在することを「量子もつれ」という。もつれ合ったキュービットの一方の量子状態を変化させると、もう一方の量子状態も予測可能な形で即座に変化する。キュービット同士が距離的に非常に離れていたとしても同じ現象が起こる。

量子もつれが起こる理由や仕組みについてはよく分かっていない。この現象はアインシュタインすらも困惑させた。アインシュタインが量子もつれのことを「不気味な遠隔作用」と表現したのは有名だ。だが、量子もつれこそ、量子コンピューターの能力の鍵となる現象だ。従来のコンピューターでは、ビット数が倍になれば、処理能力も倍になる。一方、量子もつれのおかげで、量子コンピューターにキュービットを追加すると、演算処理能力は指数関数的に増加する。

量子コンピューターは、量子の数珠つなぎのような、もつれ合ったキュービットを利用することで魔法のような能力を発揮する。特別に設計された量子アルゴリズムを用いて計算速度を向上できる量子コンピューターの能力こそ、量子コンピューターの可能性が大きな注目を集めている理由となっている。

以上が、量子コンピューターのプラス面だ。マイナス面は、「デコヒーレンス」により量子コンピューターが従来のコンピューターよりはるかにエラーを起こしやすいことだ。

■「デコヒーレンス」とは何か?

キュービットが外部環境と相互作用してキュービットの量子的な状態が衰退し、最終的に失われることを「デコヒーレンス」と呼ぶ。

続きはソースで

https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/02/18140458/062118rigetti0584finalsquare-cropped.jpg 
images


引用元: 【IT】〈解説〉量子コンピューターとは何か?ニュースを読む前に押さえたい基礎知識[02/21]

量子コンピューターとは何か?ニュースを読む前に押さえたい基礎知識の続きを読む

このページのトップヘ