理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

DQN

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/15(土) 16:06:37.37 ID:CAP_USER9
 ディープマインド(DeepMind)は10月12日、次世代の人工知能技術として「ディファレンシャブル・ニューラル・コンピューター(Differentiable Neural Computers:DNC)」を発表した。

 ディープマインドは人工知能AlphaGoによって囲碁世界チャンピオンを打ち負かしたことが記憶に新しいグーグルのAI研究チーム。近年ではコンピューター・ゲームのルールを自分で学びクリアする「DQN(Deep Q-Network)」を発表している。新AI技術のDNC(機械式計算機として名高いバベッジのディファレンシャル・エンジンを連想させる名前)は、DQNの技術を更に進化させたアーキテクチャを採用し、既存ディープラーニングよりも学習精度や汎用性が高いAI技術のようだ。

 ニューラルネットは、知識(データ)階層の上に結びつきを示すニューラルネット階層を構築し、繰り返し学習によってネットの接続を強化する。DNCではニューラルネットに加えて、ニューラルネット外部に置かれるメモリーのデータをダイナミックに並び変えるハイブリッドなしくみを採用。データとニューラルネットが密接に結びついた従来の構造に比べて複雑なデータを柔軟に扱えるため汎用性が高く、学習による精度向上も大きいという。

 DNCでは、ロンドンの地下鉄路線マップからA駅からB駅の最短経路や最小乗り換え経路を導き出すこともできれば、家系図から「誰が誰の母方の叔父か?」といった質問も答えられ、パズルを解くこともできる(いずれも繰り返して学習することで精度を高める)。DNCではそれぞれのタスクに対するプログラムをあらかじめ組むことなしに、自ら課題から解を見つけ出し、従来型ニューラルネットよりも同じ学習回数で得られる精度も高いという(データの集まりから自分で課題の解を発見する手法はDQNで試みられたゲームのルールを見つけ出す手法と同種と考えられる)。

続きはソースで

http://ascii.jp/elem/000/001/249/1249977/
ダウンロード (4)


引用元: 【技術】グーグルDeepMind、次世代人工知能技術「ディファレンシャブル・ニューラル・コンピューター」を発表 [無断転載禁止]©2ch.net

グーグルDeepMind、次世代人工知能技術「ディファレンシャブル・ニューラル・コンピューター」を発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/02/26(木) 10:38:55.23 ID:???.net
掲載日:2015年2月26日
http://www.nikkei.com/article/DGXLZO83685140W5A220C1EA2000/

01


 米グーグルは「ブロック崩し」などの電子ゲームの攻略法を遊びながら自ら編み出し、人間以上の高得点を出せる人工知能(AI)を開発した。やり方を教わらなくても自分で学習するAIに道を開く研究成果で、将来は人間にしかできないと思われていた複雑な仕事をこなせるようになる可能性もある。26日付の英科学誌ネイチャー(電子版)で発表する。

 開発したのは、人間の脳の神経回路をまねた学習機能を持つAI「DQN」。スペースインベーダーやブロック崩しなど懐かしのゲーム49種類をAIに与えた。ゲームの事前知識を教えなくても、人間のように繰り返し遊ぶことでやり方を学び、高得点を取る秘訣を編み出す。

 ブロック崩しを約100回遊ばせた段階では、AIは飛んでくるボールをうまく打ち返せないなど苦戦していたが、400回遊ぶと取りこぼしはほぼなくなった。600回を超えると、端のブロックに攻撃を集中して穴を開け、ブロックの裏側にもボールを送り込んで崩す攻略法を発見し、高得点を出せるようになった。

 ゲームの試験開発に携わるプロの人間とAIが得点を競ったところ、ゲーム49種類のうち29種類で、人間並みかそれ以上の得点を得られたという。ブロック崩しでは人間の13倍の得点を取り、最も上手になった「ピンボール」では25倍に達した。

続きはソースで

<参照>
Deep Q-network: New artificial intelligence can learn how to play vintage video games from scratch - BelfastTelegraph.co.uk
http://www.belfasttelegraph.co.uk/technology/deep-qnetwork-new-artificial-intelligence-can-learn-how-to-play-vintage-video-games-from-scratch-31022741.html

Nature : Human-level control through deep reinforcement learning - YouTube
https://www.youtube.com/watch?v=iqXKQf2BOSE



Human-level control through deep reinforcement learning : Nature : Nature Publishing Group
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

<関連>
Playing Atari with Deep Reinforcement Learning
http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

引用元: 【AI/機械学習】グーグル、自ら学ぶ人工知能「Deep Q-network」開発 ゲーム繰り返し遊んで攻略

【動画】グーグルが人工知能「DQN」開発 ゲームを繰り返し遊んで攻略の続きを読む

このページのトップヘ